HYDROLOGY AND HYDRAULICS REPORT FOR THE US 6 WEST EDWARDS INTERSECTION IMPROVEMENT PROJECT

Township 4 South, Range 83 West, of the 6th P.M., Eagle County, CO

Prepared for:

Eagle County P.O. Box 850 500 Broadway Eagle, Colorado 81631

Prepared by:

Felsburg Holt & Ullevig 6400 S Fiddlers Green Circle, Suite 1500 Greenwood Village, CO 80111 303.721.1440

FHU Reference No. 118339-01

November 2023

TABLE OF CONTENTS

١.	IntroductionI										
	1.1	I.I Project Location I									
	1.2	Description of Property									
2.	. Hydrology										
	2.1	Major B	Basins	. 3							
	2.2	Minor B	Basins	.4							
		2.2.1	Offsite Basins/Existing Basins	.4							
		2.2.2	Proposed Roadway Basins	. 5							
3.	Desig	gn Discu	ssion	6							
	3.1	Regulati	ions and Constraints	.6							
	3.2	Hydrold	ogic Criteria	.6							
	3.3	Hydraul	lic Criteria	.6							
	3.4	Variance	es from Criteria	.7							
4.	Reco	mmend	ed Design	7							
	4. I	General	l Concept	.7							
	4.2	Specific	Details	.8							
5.	Storr	nwater	Management Plan	8							
6.	Refer	ences	-	9							

Appendices

Appendix A. Hydrologic Analysi	5
--------------------------------	---

- Appendix B. Hydraulic Calculations
- Appendix C. Supporting Information

List of Figures

Figure I-I.	Project Location	I
Figure I-2.	Project Area	2
Figure 2-1.	FEMA FIRM	4

List of Tables

Table I-I.	Project Area Soils	3
Table 2-1.	Offsite/Existing Basins Summary	5
Table 2-2.	Proposed Basins Summary	6

I. INTRODUCTION

I.I Project Location

This project consists of roadway and intersection improvements on US 6 at Hillcrest Drive in Eagle County, Colorado. The project is in the SE ¹/₄ of the SE ¹/₄ of Section 36 of Township 4 South, Range 83 West of the 6th P.M., Eagle County, Colorado. **Figure I** shows the project vicinity. This project is adjacent to the Eagle River and runoff from the project will outfall to the Eagle River.

The project limits are approximately 0.5 miles along US 6 at Hillcrest Drive. The main project scope involves roadway widening along US 6 and a new roundabout at the intersection of US 6 and Hillcrest Drive. New storm sewer and a water quality vault are also proposed to accommodate these roadway improvements.

Figure I-I. Project Location

US 6 West Edwards Hydrology and Hydraulics Report

Figure I-2. Project Area

I.2 Description of Property

The project area consists of the intersection of US 6 and Hillcrest Drive and portions of US 6 and Hillcrest Drive adjacent to the intersection. The surrounding area consists of the Mountain Life Calvary Chapel and the St. Clare of Assisi Parish on the west of side of the project, undeveloped land in the middle of the project area and commercial development at the east end of the project area. North of US 6, the Eagle River flows from east to west and is the main outfall for the project area. The project ties into existing conditions just south of the Hillcrest Drive Bridge over the Eagle River and approximately ¹/₄ mile east and west along US 6 from Hillcrest Drive.

There are no known irrigation facilities in the project area. See Table I-I for soils information in the project area and on the offsite basins.

Table I-I. Project Area Soils

Soil Type	Hydrologic Soil Group	Notes
Atencio-Azeltine, 3 to 6 percent slopes	В	Offsite Basin
Gypsum land- Gypsiorthids complex, 12 to 65 percent slopes	Assume C/D	Offsite Basin
Mussel loam, I to 6 percent slopes	В	Project Area
Tanna-Pinelli complext, 12 to 25 percent slopes	D	Offsite Basin
Torriorthents- Camborthids-Rock outcrop complex, 6 to 65 percent	С	Offsite Basin
Uracca, moist-Mergel complex, 12 to 25 percent slopes	В	Offsite Basin
Vandamore channery sandy loam, 25 to 65 percent slopes	В	Project Area/Offsite Basin
Yamo loam, 6 to 12 percent slopes	В	Project Area

2. HYDROLOGY

2.1 Major Basins

The project is in the Eagle River major drainage basin and stormwater runoff will outfall to the Eagle River. Eagle River has a Federal Emergency Management Agency (FEMA) designated floodplain as identified on Flood Insurance Rate Map (FIRM) 08037C0419D, effective 12/4/2007. The regulatory designated floodplain is identified as Zone AE with a floodway delineated. Outfalls from the proposed storm sewer systems will require work in the FEAM designated floodplain, however, it is not anticipated that the proposed work will cause a rise in the base flood elevations because no net fill is proposed.

According to the Eagle County Flood Insurance Study (FIS), effective December 4, 2007, Eagle River has a drainage basin of approximately 402 square miles upstream of the project area with a 100-year flow of 5,430 cfs.

Figure 2-1. FEMA FIRM

2.2 Minor Basins

2.2.1 Offsite Basins/Existing Basins

There are approximately 7 major offsite basins contributing flow to the project area and several smaller offsite basins contributing flow to existing storm sewer systems. All these basins are south of the project area and flow to the north. Most of the basins consist of undeveloped land with relatively steep slopes ranging from 12 to 60 percent. Refer to Appendix A for the existing basin maps which show both the existing basins in the project area and the offsite basins south of the project area.

BASIN SUMMARY TABLE										
		-								
Basin	Basin	10yr	100yr	Q10	Q100					
ID	Area (Ac)	Coe	ficient		cfs					
N1	1.08	0.40	0.63	0.80	2.14					
N2	1.15	0.36	0.60	0.66	1.90					
N3	0.14	0.87	0.90	0.31	0.54					
N4	0.86	0.87	0.90	1.85	3.28					
N5	0.40	0.75	0.83	0.76	1.44					
S1	0.99	0.44	0.65	0.84	2.11					
S2	5.83	0.15	0.48	1.55	8.72					
S3	17.34	0.11	0.46	3.04	21.67					
S4	0.01	0.23	0.53	0.00	0.02					
S5	0.20	0.39	0.62	0.16	0.43					
S6	0.09	0.25	0.54	0.05	0.17					
S7	8.65	0.09	0.45	1.44	12.08					
S8	2.99	0.11	0.46	0.60	4.40					
S9	0.67	0.19	0.50	0.22	1.00					
S10	0.16	0.07	0.44	0.02	0.24					
S11	3.35	0.23	0.53	1.47	5.70					
S12	0.39	0.50	0.68	0.39	0.93					
S13	0.14	0.41	0.63	0.11	0.28					

 Table 2-I.
 Offsite/Existing Basins Summary

2.2.2 Proposed Roadway Basins

There are 10 roadway basins based on the roadway design and the proposed storm sewer layout. There are two low points on either side of the roundabout where the roadway transitions through a normal crown to the roundabout sloping to the north. The eastern and western legs of the project limits on US 6 drain toward the roundabout and then to the north.

Basins PA3, PA4, PA12, PA13 include the south side of the US 6 roadway from the western and eastern project limits to the roundabout. These basins are all directed to the low points on the edge of the roundabout.

Basins PA2 and PA10 include the north side of the US 6 roadway from the western and eastern project limits to the roundabout. These basins are collected by on-grade inlets that are placed before the cross walks on either side of the roundabout.

Basins PA6 and PA9 include the west and east sides of the roundabout and drain from the south to the north.

Basins PA7 and PA8 include the Hillcrest roadway north of the roundabout. These basins drain to the north and are collected by inlets that will replace existing inlets just south of the existing bridge.

Basin PA4 is the offsite basin south of the project area that drains to the cross-culvert under US 6 just west of the roundabout.

	BASIN SUMMARY TABLE											
Basin	Basin	10yr	100yr	Q10	Q100							
ID	Area (Ac)	Coet	ficient	cfs								
PA2	0.07	0.87	0.90	0.15	0.27							
PA3	0.08	0.87	0.90	0.18	0.31							
PA4	16.88	0.13	0.47	3.83	23.49							
PA5	0.02	0.87	0.90	0.04	0.08							
PA6	0.23	0.87	0.90	0.50	0.89							
PA7	0.07	0.87	0.90	0.15	0.27							
PA8	0.08	0.87	0.90	0.18	0.31							
PA9	0.20	0.87	0.90	0.44	0.78							
PA10	0.11	0.87	0.90	0.24	0.43							
PA11	0.26	0.87	0.90	0.57	1.01							
PA12	0.09	0.87	0.90	0.20	0.35							
PA13	0.03	0.87	0.90	0.07	0.12							

Table 2-2. Proposed Basins Summary

3. DESIGN DISCUSSION

3.1 Regulations and Constraints

This study complies with CDOT Storm Drainage Criteria which includes utilizing parts of the Mile High Flood District (MHFD) Urban Storm Drainage Criteria Manual when appropriate. The Eagle County Land Use Regulations have also been referenced for this design.

3.2 Hydrologic Criteria

The Rational Method was used to calculate the peak runoff for the minor and major rainfall events for the offsite and roadway basins. The minor event is the 10-year storm with a 1-hour rainfall intensity of 0.745 in/hr. The major event is the 100-year storm with a 1-hour rainfall intensity of 1.28 in/hr. These values were obtained from NOAA Atlas 14, Volume 8, Version 2 for the project area.

3.3 Hydraulic Criteria

Spread Width

US 6 is classified as a major collector with a design speed of 50 miles per hour which decreases at the roundabout approaches. The proposed improvements include curb and gutter and a varying typical section. According to the CDOT criteria, the stormwater spread from the 10-year event should only extend to the shoulder width assuming the shoulder width is 4 feet or wider. In cases where the shoulder width is less than 4 feet, or there is no shoulder, 4 feet from the flowline will be considered for the maximum spread. However, CDOT criteria also makes allowances for roadways with curb and gutter and no shoulder or parking lane and relatively flat longitudinal slopes of 0.3% to 1%. In these cases, flow may spread into the travel lane, however flow spread width must never exceed the lane width adjacent to the gutter for the design conditions, which is the 10-year event in this case. Most of the project longitudinal slope is less than 1% and spread into the adjacent travel lane may be considered during final design as the storm sewer layout is finalized.

For the major, 100-year event, the allowable depth and inundation must not exceed the following conditions:

- Residential dwellings, public, commercial, and industrial buildings must not be flooded at the foundations unless the buildings are floodproofed.
- The depth of water at the street crown on continuous-grade sections must not exceed 6 inches to allow the passage of emergency vehicles.
- The depth of water at the panline on continuous-grade sections must not exceed 18 inches.

Storm Sewer System

Inlets have been placed at roadway sumps and at logical locations like upstream of median breaks and crosswalks. Inlets will also be placed approximately 10 feet upstream of superelevation transitions. The MHFD UD-Inlet spreadsheet and CDOT nomographs were referenced for inlet capacity calculations. Table 13.2 in the CDOT Drainage Manual was referenced for the clogging factor for inlets.

Twenty-four-inch minimum pipe diameter is assumed for the storm drains. SewerGEMs was used to analyze the storm sewer system in regards to velocity and pipe capacity.

Allowable Headwater

Cross-culverts in the project area will adhere to the CDOT criteria regarding allowable headwater elevations. Specifically, Section 9.2.2 of the CDOT Drainage Criteria manual was referenced for allowable headwater limitations and Table 9.3 was used to determine the maximum headwater depth to structure depth ratio of 2.0 for structures less than 36 inches and 1.7 for structures between 36 inches and 60 inches.

Water Quality

The project is adjacent to Eagle River and improvements are proposed within 100 feet of the river. According to Eagle County's Land Use Regulations, Section 4-650, stormwater is not allowed to discharge directly to a natural water body without first either being treated or by sheet flow across at least 100 feet of stable vegetation. A water quality vault is proposed to treat the 2-year flow from the majority of the roadway basins in the project area of 1.6 cfs. The water quality vault will be required to bypass the 100-year peak flow of 4.8 cfs.

3.4 Variances from Criteria

No variances from criteria are proposed at this time or expected during final design.

4. RECOMMENDED DESIGN

4.1 General Concept

Proposed drainage patterns will remain as close to historic patterns as possible with Eagle River as the ultimate outfall. Off-site flow will be captured either in existing storm sewer systems adjacent to the project area or captured in a cross culvert and directed to Eagle River. The majority of the project area will be treated in a water quality vault before discharging to the Eagle River. Hydraulic calculations are included in Appendix B of this report. The hydraulic design will be within the allowable limits as stated in the CDOT Drainage Manual.

The existing Hillcrest Drive Bridge over Eagle River will not be impacted by this project and work is not anticipated in the Eagle River at the Bridge. There will be outfalls with rundowns directed to the Eagle River which will require work in the floodplain and on the banks of the river.

4.2 Specific Details

Runoff from the proposed improvements will be captured in Type 16 inlets placed on the west and east legs of the roundabout and at the north project limits on Hillcrest Drive. These inlets are all tied into the same proposed storm sewer system (Line C) that will collect and convey the roadway runoff to the northwest corner of the new roundabout. The storm sewer will flow through a water quality vault before discharging to the Eagle River.

There is one cross culvert (Line A) in the project area directing offsite flows from the south side of the project to the north to discharge to the Eagle River. This in existing drainage pattern with the existing cross-culvert being upsized to meet the capacity criteria of passing the 100-year flow.

There is another cross culvert (Line B) on the south side of the roundabout directing flows from east to west. These flows are made up of roadway runoff and offsite flow from the south that combine in an existing roadside ditch on the south side of US 6. The proposed roundabout pushes the existing ditch further south and decreases the ditch size due to the proximity of a steep hill on the south side of the project. The existing ditch size was further decreased because an existing 2-track road has been regraded south of the roundabout to maintain access through the property south of US 6. A 30"×19" elliptical pipe allows low flows in the drainage ditch to flow under the 2-track road. The 100-year flows will pass from the east to the west using the elliptical pipe and overtop the 2-track road to flow to Line A and then discharge to the Eagle River.

The headwater elevations for both Lines A and B were checked to ensure they were below the curb and gutter elevation of US 6 and the roundabout so there will be no overtopping of US 6 in the major event.

5. STORMWATER MANAGEMENT PLAN

The estimated disturbance area is approximately 2.4 acres. Stormwater management plans following the CDOT standards have been provided in the final plan set. The final SWMP plans in the construction plan set are to be followed by the contractor. These sheets will address various grading, erosion, and sedimentation issues and project area requirements.

6. **REFERENCES**

- 1. Colorado Department of Transportation Drainage Design Manual. 2019.
- 2. Eagle County Land Use Regulations. Updated July 2019.
- 3. Mile High Flood District Urban Storm Criteria Manuals.
- 4. FEMA Flood Insurance Study for Eagle County. Effective December 4, 2007.
- 5. FEMA FIRM 08037C0419D, Effective December, 4, 2007.
- 6. NOAA Atlas 14, Volume 8, Version 2. Referenced April 2021.
- 7. Natural Resources Conservation Service Web Soil Survey. Referenced April 2021.

APPENDIX A. HYDROLOGIC ANALYSIS

1			BA	<u>sin sum</u> n	IARY TABLE]								
- fl		Basin	Basin	10yr	100yr	Q10	Q100								
1	19	ID N1	Area (Ac) 1.08	Coef	ficient 0.63	0.80	fs 2.14								
1-	1 3	N2 N3	1.15 0.14	0.36	0.60	0.66	1.90 0.54								
4		4 N4	0.86	0.87	0.90	0.76	3.28 1.44								
5	12	51 52	0.99 5.83	0.44 0.15	0.65	0.84	2.11 8.72								
/-	131-	S3 S4	17.34	0.11 0.23	0.46	3.04 0.00	21.67 0.02								
56	<	S5 S6	0.20	0.39 0.25	0.62	0.16	0.43								
2	~ ~	4 S7 S8	8.65	0.09	0.45	1.44	12.08								
1		S9 510	0.67	0.19	0.40	0.22	1.00								
10	155	S10	3.35	0.07	0.44	1.47	5.70								
1)r()	S12 S13	0.39	0.50	0.68	0.39	0.93								
1	17170	5													
-															
<	3,22														
2-															
17	2/2														
	NS	1													
1															
1		115													
-	7221														
			LEGEND												
			· — ——	EXISTIN	IG RIGHT-	-0F-WA`	Y _								
N. In		10%	۳	EXISTIN		ERTY LIN	E								
10 miles				BASIN		(Y 									
ne the	h.B.			FLOW	JIRECTION	N									
			x	BASIN	DESIGNAT	10N -									
	A Contraction		Ĵ	SEE N	EXT SHEE	T									
	115%	102	_												
1	DEFX	1 Alexandress of the second se													
112	1944 S S S F	-													
Stic		4													
	() AMALLETTER	4													
eller's		j j	×.												
1111		11-11	$\mathbf{\lambda}$												
	Mile II		$\langle \rangle$												
14			\vee												
		-													
MIST	Milling Contraction	HORIZ. SCA	LE: 1"=300	'											
21720	200 - 20 - 20 - 20 - 20 - 20 - 20 - 20	0' 15	50' 300'												
WE	ST EDWAR		/EMENTS				CODE								
	PRE-PF	ROJECT			- ROJE										
	OVERALL	BASIN MAP			##	######	##								
	KMG	STRUCTURE													
SET:	DRAINAGE		BAS-01	OF 7		1									

2:52:48

PLEASE SEE CONST FOR ADDITIONAL INF RELATED TO EXISTIN WITHIN THE PROJEC	RUCTION PLANS FORMATION NG UTILITIES CT CORRIDOR.
LEGEND	
A BASIN BOUNDAR EXISTING RIGHT- EXISTING PROPE A - BASIN DESI B - AREA IN AR C - 10-YEAR D - 100-YEAR	Y -OF-WAY IRTY LINE IGNATION CRES COEFFICIENT COEFFICIENT
E E – DESIGN PO	NINT
0' 60' 120'	
WEST EDWARDS IMPROVEMENTS	ECT NO./CODE
BASIN MAP	########
KMG STRUCTURE	
T: DRAINAGE BAS-04 OF 7	4

	BA	SIN SUMM	ary table				
		40	100				
Basin	Basin	TOyr	TUUyr	Q10	Q100		
ID	Area (Ac)	Coeff	icient	C	fs		
N1	1.08	0.40	0.63	0.80	2.14		
N2	1.15	0.36	0.60	0.66	1.90		
N3	0.14	0.87	0.90	0.31	0.54		
N4	0.86	0.87	0.90	1.85	3.28		
N5	0.40	0.75	0.83	0.76	1.44		
S1	0.99	0.44	0.65	0.84	2.11		
S2	5.83	0.15	0.48	1.55	8.72		
S3	17.34	0.11	0.46	3.04	21.67		
S4	0.01	0.23	0.53	0.00	0.02		
S5	0.20	0.39	0.62	0.16	0.43		
S6	0.09	0.25	0.54	0.05	0.17		
S7	8.65	0.09	0.45	1.44	12.08		
S8	2.99	0.11	0.46	0.60	4.40		
S9	0.67	0.19	0.50	0.22	1.00		
S10	0.16	0.07	0.44	0.02	0.24		
S11	3.35	0.23	0.53	1.47	5.70		
S12	0.39	0.50	0.68	0.39	0.93		
S13	0.14	0.41	0.63	0.11	0.28		

COEFFICIENTS OF DEVELOPMENT

Project: US 6 West, Hillcrest to Arrowgrass

Project #: 118339-01

Date: 07-May-21

File: Hydro_Existing.xlsx

					IMPEF	RVIOUSNES	S			SOIL TYPE		RUNOFF COEFF.				
BASIN	DES.	AREA	Open	Residential	Residential	Roofs	Commercial	Paved	Comp.							
	PT.	ACRES	% Imp.	% Imp.	% Imp.	% Imp.	% Imp.	% Imp.	% Imp.	Α	В	C/D	2	5	10	100
			2	25	35	90	95	100		Percent of	Percent of	Percent of	YEAR	YEAR	YEAR	YEAR
			Acres	Acres	Acres	Acres	Acres	Acres		Total Area	Total Area	Total Area				
N1		1.08	0.63	0.00	0.00	0.00	0.00	0.45	42.83	0.0	100.0	0.0	0.31	0.34	0.40	0.63
N2		1.15	0.74	0.00	0.00	0.00	0.00	0.41	36.94	0.0	100.0	0.0	0.26	0.29	0.36	0.60
N3		0.14	0.00	0.00	0.00	0.00	0.00	0.14	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
N4		0.86	0.00	0.00	0.00	0.00	0.00	0.86	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
N5		0.40	0.06	0.00	0.00	0.00	0.00	0.34	85.30	0.0	100.0	0.0	0.70	0.72	0.75	0.83
S1		0.99	0.53	0.00	0.00	0.00	0.00	0.46	47.54	0.0	100.0	0.0	0.35	0.38	0.44	0.65
S2		5.83	5.50	0.00	0.00	0.00	0.00	0.33	7.55	0.0	58.0	42.0	0.04	0.07	0.15	0.48
S3		17.34	16.88	0.00	0.00	0.00	0.00	0.46	4.60	0.0	77.0	23.0	0.02	0.04	0.11	0.46
S4		0.01	0.01	0.00	0.00	0.00	0.00	0.002	21.60	0.0	100.0	0.0	0.14	0.16	0.23	0.53
S5		0.20	0.12	0.00	0.00	0.00	0.00	0.08	41.20	0.0	100.0	0.0	0.30	0.33	0.39	0.62
S6		0.09	0.07	0.00	0.00	0.00	0.00	0.02	23.78	0.0	100.0	0.0	0.16	0.18	0.25	0.54
S7		8.65	8.65	0.00	0.00	0.00	0.00	0.002	2.02	0.0	74.0	26.0	0.01	0.02	0.09	0.45
S8		2.99	2.99	0.00	0.00	0.00	0.00	0.003	2.10	0.0	53.0	47.0	0.01	0.03	0.11	0.46
S9		0.67	0.57	0.00	0.00	0.04	0.00	0.06	16.03	0.0	100.0	0.0	0.10	0.12	0.19	0.50
S10		0.16	0.16	0.00	0.00	0.00	0.00	0.00	2.00	0.0	100.0	0.0	0.01	0.01	0.07	0.44
S11		3.35	2.68	0.00	0.00	0.09	0.00	0.58	21.33	0.0	93.0	7.0	0.14	0.16	0.23	0.53
S12		0.39	0.18	0.00	0.00	0.00	0.00	0.21	54.77	0.0	100.0	0.0	0.42	0.45	0.50	0.68
S13		0.14	0.08	0.00	0.00	0.00	0.00	0.06	44.00	0.0	100.0	0.0	0.32	0.35	0.41	0.63

								TIN	IE OF C	ONCENT	RATION							
												SURFACE	TYPES			Surface Type	Factor (C _v)	
		Project:	US 6 West, Hi	illcrest to Arrowg	grass				Equation:			A=Forest wi	th ground litter	& meadow		A	0.25	
	Project #: 118339-01								t _i =0.395(1.1	-C ₅)L ^{0.5} /S ^{0.33}		B=Fallow or	minimum tillag	e cultivation		В	0.50	
		Date:	07-May-21						V=C _V S _W ^{0.5}	0,		C= Short ar	ass pasture & l	awns		C	0.70	
	File: Hydro Existing view $t = 1 \dots /(60 \text{ V})$							D=Nearly ba	are ground			D	1 00					
									E=Grassed	waterway			F	1.50				
												E=Daved ar	watchway	8 challow gutte	orflow	E	2.00	
F=Paved area (sheet flow) & shallow gutter f															F	2.00		
SUB-B	ASIN DATA			INITIAL/OVERL/	AND TIME (t _i)		Ι	TRAV	/EL TIME (t _t)			Т _с			T _c Chec	ck (Urban)	BASIN DEFINITION	FINAL
BASIN	DESIGN	C5	AREA	LENGTH, L	SLOPE, S	ti	LENGTH, L _w	SLOPE, Sw	SURF.	VEL.	t,	t _i +t _t	L _T =L+L _W	So	i	(18-15i)+L _t /(60(24i+12)SQRT(S ₀))	URBAN	Tc
	PT.		(AC)	(FT)	(%)	(MIN)	(FT)	(%)	TYPE	(F/S)	(MIN)	(MIN)	(FT)	(FT/FT)	(AC/AC)	(MIN)	OR	(MIN)
			· · ·			. ,	. ,					. ,		, , ,	. ,		NON-URBAN	. ,
N1		0.34	1.08	21.7	3.10	4.4	647	0.5	F	1.3	8.0	12.4	668.9	0.005	0.428	18.4	URBAN	12.4
N2		0.29	1.15	30.9	4.75	4.9	637	0.2	F	0.9	11.9	16.7	667.8	0.004	0.369	20.8	URBAN	16.7
N3		0.86	0.14	31.5	5.87	1.4	154	3.8	F	3.9	0.7	5.0	185.8	0.041	1.000	3.4	URBAN	5.0
N4		0.86	0.86	36.4	4.95	1.5	610	1.4	E	1.8	5.7	7.3	646.7	0.016	1.000	5.4	URBAN	5.4
N5		0.72	0.40	57.3	10.60	2.4	168	0.6	E	1.2	2.4	5.0	225.4	0.032	0.853	5.9	URBAN	5.0
S1		0.38	0.99	25.6	1.43	5.8	460	0.8	E	1.4	5.6	11.4	485.1	0.009	0.475	14.6	URBAN	11.4
S2		0.07	5.83	500.1	52.3	11.3	585	12.2	E	5.2	1.9	13.1	1085.3	0.307	0.075	19.2	NON-URBAN	13.1
S3		0.04	17.34	500.0	30.84	13.8	1836	34.9	E	8.9	3.5	17.3	2335.7	0.340	0.046	22.4	NON-URBAN	17.3
S4		0.16	0.01	9	13.1	2.2	14	12.6	F	7.1	0.0	5.0	23.2	0.128	0.216	14.8	NON-URBAN	10.0
S5		0.33	0.20	86	3.5	8.6	71	0.4	E	1.0	1.2	9.8	156.9	0.021	0.412	12.6	URBAN	9.8
S6		0.18	0.09	72	20.0	5.2	37	0.6	F	1.6	0.4	5.6	108.8	0.134	0.238	14.7	NON-URBAN	10.0
S7		0.02	8.65	500	60.4	11.2	742	21.4	E	6.9	1.8	13.0	1241.7	0.371	0.020	20.4	NON-URBAN	13.0
S8		0.03	2.99	418	55.6	10.5	832	15.0	F	7.8	1.8	12.3	1249.6	0.286	0.021	20.8	NON-URBAN	12.3
S9		0.12	0.67	372	15.6	13.8	93	5.1	E	3.4	0.5	14.3	464.8	0.135	0.160	16.9	NON-URBAN	14.3
S10		0.01	0.16	27	35.5	3.1	67	13.4	E	5.5	0.2	5.0	93.9	0.197	0.020	18.0	NON-URBAN	10.0
S11		0.16	3.35	344	30.0	10.2	502	5.4	F	4.7	1.8	12.0	845.9	0.154	0.213	16.9	NON-URBAN	12.0
S12		0.45	0.39	219	6.2	9.6	94	5.9	F	4.9	0.3	9.9	312.9	0.061	0.548	10.6	URBAN	9.9
S13		0.35	0.14	147	2.2	12.7	70	1.5	F	2.4	0.5	13.2	217.2	0.019	0.440	12.6	URBAN	12.6
					<u> </u>													

						STC (RA	ORM DRA ATIONAL	METHC 10-YE	SYS DD P AR	ROC	I DESI EDUF	GN RE)									
	Project: Project #: Date: File:	US 6 West, Hillcrest to A 118339-01 44323.00 Hydro_Existing.xlsx	nrowgrass					Q=C*I*A											1-Hour Intensities 10-Year 0.745 I=(28.5 P ₁)/(10+T _C	o ^{0.786}	
				DIRECT F	RUNOFF					TOTAL	RUNO	F	STREE	Т		PIPE			TRAVEL TIME		REMARKS
BASIN	DES.	AREA	Open	COEF.	tc	C*A	1	Q	tc	C*A	1	Q	SLOPE		DESIGN	SLOPE	PIPE	LENGTH	VEL.	tt	
	PT.	ACRES	% Imp.		(MIN)	(AC)	(IN/HR)	(CFS)	(MIN) (AC)	(IN/HR)	(CFS)	(%)	Q	(CFS)	(%)	SIZE	(FT.)	(FPS)	(MIN)	
N1		1.08	42.83	0.40	12.4	0.44	1.84	0.8													
N2		1.15	36.94	0.36	16.7	0.41	1.60	0.7													
N3		0.14	100.00	0.87	5.0	0.12	2.53	0.3													
N4		0.86	100.00	0.87	5.4	0.75	2.48	1.8													
N5		0.40	85.30	0.75	5.0	0.30	2.53	0.8													
S1		0.99	47.54	0.44	11.4	0.44	1.91	0.8													
S2		5.83	7.55	0.15	13.1	0.86	1.80	1.5													
S3		17.34	4.60	0.11	17.3	1.92	1.58	3.0													
S4		0.01	21.60	0.23	10.0	0.00	2.02	0.0													
S5		0.20	41.20	0.39	9.8	0.08	2.04	0.2													
S6		0.09	23.78	0.25	10.0	0.02	2.02	0.0		-											
<u>S7</u>		8.65	2.02	0.09	13.0	0.80	1.80	1.4													
<u>S8</u>		2.99	2.10	0.11	12.3	0.32	1.85	0.6													
S9 S10		0.67	16.03	0.19	14.3	0.13	1.73	0.2	-	-											
S10 S11	+	0.10	21.33	0.07	12.0	0.01	2.02	1.5		-											
S12		0.39	54.77	0.23	9.9	0.78	2.02	0.4				<u> </u>									
S13		0.14	44 00	0.00	12.6	0.20	1.83	0.1	1	+											
	1	0.14		0.41		0.00		0.1													

	STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE) 100-YEAR																			
	Project: Project #: Date: File:	US 6 West, Hillcrest to A 118339-01 44323.00 Hydro_Existing.xlsx	Arrowgrass					Q=C*I*A										1-Hour Intensitie: 100-Year 1.28 I=(28.5 P ₁)/(10+T _C	s (P1)	
				DIRECT I	RUNOFF	-		-		TOTAL	RUNO	F	STREE	г	PIPE			TRAVEL TIME		REMARKS
BASIN	DES.	AREA	Open	COEF.	tc	C*A	1	Q	tc	C*A	I.	Q	SLOPE	DESI	SN SLOPE	PIPE	LENGTH	VEL.	tt	
	PT.	ACRES	% Imp.		(MIN)	(AC)	(IN/HR)	(CFS)	(MIN)	(AC)	(IN/HR)	(CFS)	(%)	Q (CFS	6) (%)	SIZE	(FT.)	(FPS)	(MIN)	
N1		1.08	42.83	0.63	12.4	0.68	3.16	2.1												
N2		1.15	36.94	0.60	16.7	0.69	2.76	1.9												
N3		0.14	100.00	0.90	5.0	0.13	4.34	0.5												
N4		0.86	100.00	0.90	5.4	0.77	4.26	3.3												
N5		0.40	85.30	0.83	5.0	0.33	4.34	1.4												
S1		0.99	47.54	0.65	11.4	0.64	3.28	2.1												
S2		5.83	7.55	0.48	13.1	2.82	3.09	8.7												
S3		17.34	4.60	0.46	17.3	7.98	2.71	21.7												
S4		0.01	21.60	0.53	10.0	0.01	3.46	0.0												
S5		0.20	41.20	0.62	9.8	0.12	3.50	0.4												
S6		0.09	23.78	0.54	10.0	0.05	3.46	0.2												
S7		8.65	2.02	0.45	13.0	3.90	3.10	12.1												
<u>S8</u>		2.99	2.10	0.46	12.3	1.38	3.18	4.4												
<u>S9</u>		0.67	16.03	0.50	14.3	0.34	2.97	1.0						_		-				
S10		0.16	2.00	0.44	10.0	0.07	3.40	0.2						_		-				
S11 612		0.30	Z1.33	0.53	12.0	0.27	3.21	5./							_					
S12		0.39	44.00	0.00	9.9	0.27	3.40	0.9						-		-			+	
- 515		0.14	.00	0.00	12.0	0.03	0.10	0.0						+						

:\118339-01 US6W Hillcrest to Arrowgrass\04_CML\CADD\Hydraulics\Drawings\1_18339_DRBA_04, 12/17/2021 1:53:28 PM, Ryan.Wc

BASIN SUMMARY TABLE												
Basin	Basin	10yr	100yr	Q10	Q100							
ID	Area (Ac)	Coeff	icient	C.	fs							
PA2	0.07	0.87	0.90	0.15	0.27							
PA3	0.08	0.87	0.90	0.18	0.31							
PA4	16.88	0.13	0.47	3.83	23.49							
PA5	0.02	0.87	0.90	0.04	0.08							
PA6	0.23	0.87	0.90	0.50	0.89							
PA7	0.07	0.87	0.90	0.15	0.27							
PA8	0.08	0.87	0.90	0.18	0.31							
PA9	0.20	0.87	0.90	0.44	0.78							
PA10	0.11	0.87	0.90	0.24	0.43							
PA11	0.26	0.87	0.90	0.57	1.01							
PA12	0.09	0.87	0.90	0.20	0.35							
PA13	0.03	0.87	0.90	0.07	0.12							

NOTE: UTILITIES ARE NOT SHOWN ON THE BASIN MAPS FOR CLARITY. PLEASE SEE CONSTRUCTION PLANS FOR ADDITIONAL INFORMATION RELATED TO EXISTING UTILITIES WITHIN THE PROJECT CORRIDOR.

		BASIN BOUND	ARY
	A B C D E	A – BASIN DI B – AREA IN C – 10-YEAF D – 100-YEA E – DESIGN	ESIGNATION ACRES COEFFICIENT R COEFFICIENT OW DIRECTION POINT
h h	$\not\models$		
		,	
HORIZ.	SCALE: 1"=	=200'	
0'	100'	200'	
	RDS IMPR	ROVEMENTS	PROJECT NO./CODE
BASIN	MAP		##########
KMG	STRUCTURE		
DRAINAGE		BAS-07 OF 7	7 7

Project: US 6 West, Hillcrest to Arrowgrass Project #: 118339-01 Date: 17-Dec-21 File: Hydro_Proposed.xlsx

COEFFICIENTS OF DEVELOPMENT

					IMPE	RVIOUSNES			SOIL TYPE			RUNOFF	- COEFF.			
BASIN	DES.	AREA	Open	Residential	Residential	Residential	Commercial	Paved	Comp.							
	PT.	ACRES	% Imp.	% Imp.	% Imp.	% Imp.	% Imp.	% Imp.	% Imp.	А	В	C/D	2	5	10	100
			2	25	35	45	95	100		Percent of	Percent of	Percent of	YEAR	YEAR	YEAR	YEAR
			Acres	Acres	Acres	Acres	Acres	Acres		Total Area	Total Area	Total Area				
PA2	C130	0.07	0.00	0.00	0.00	0.00	0.00	0.07	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
PA3	C120	0.08	0.00	0.00	0.00	0.00	0.00	0.08	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
PA4	A01	16.88	15.88	0.00	0.00	0.00	0.80	0.20	7.57	0.0	80.0	20.0	0.04	0.06	0.13	0.47
PA5	C110	0.02	0.000	0.00	0.00	0.00	0.00	0.02	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
PA6	C50	0.23	0.000	0.00	0.00	0.00	0.00	0.23	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
PA7	C30	0.07	0.00	0.00	0.00	0.00	0.00	0.07	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
PA8	C40	0.08	0.00	0.00	0.00	0.00	0.00	0.08	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
PA9	C70	0.20	0.00	0.00	0.00	0.00	0.00	0.20	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
PA10	C170	0.11	0.00	0.00	0.00	0.00	0.00	0.11	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
PA11	C200	0.26	0.00	0.00	0.00	0.00	0.00	0.26	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
PA12	C180	0.09	0.00	0.00	0.00	0.00	0.00	0.09	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90
PA13	C190	0.03	0.00	0.00	0.00	0.00	0.00	0.03	100.00	0.0	100.0	0.0	0.84	0.86	0.87	0.90

	TIME OF CONCENTRATION																	
												SURFACE	TYPES			Surface Type	Factor (C _V)	
		Proiect:	US 6 West. H	lillcrest to Arrowo	arass				Equation:			A=Forest w	ith ground litte	r & meadow		A	0.25	
		, Project #:	118339-01						t _i =0.395(1.1	1-C ₅)L ^{0.5} /S ^{0.33}	3	B=Fallow or	· minimum tilla	ge cultivation		В	0.50	
		Date:	17-Dec-21						V=C _v S _w ^{0.5}			C= Short gr	ass pasture &	lawns		С	0.70	
		File:	Hydro Propos	sed.xlsx					$t_t = L_W / (60V)$			D=Nearly ba	are ground			D	1.00	
									. ,			E=Grassed	waterway			E	1.50	
	F=Paved area (sheet flow) & shallow gutter flow														F	2.00		
																•		
SUB-E	BASIN DATA			INITIAL/OVERL	AND TIME (t _i)			TRAV	EL TIME (t _t)		T _C			T _C Cheo	ck (Urban)	BASIN DEFINITION	FINAL
BASIN	DESIGN	C5	AREA	LENGTH, L	SLOPE, S	ti	LENGTH, L _W	SLOPE, S _W	SURF.	VEL.	t _t	t _i +t _t	L _T =L+L _W	S ₀	i	(18-15i)+L _t /(60(24i+12)SQRT(S ₀))	URBAN	Tc
	PT.		(AC)	(FT)	(%)	(MIN)	(FT)	(%)	TYPE	(F/S)	(MIN)	(MIN)	(FT)	(FT/FT)	(AC/AC)	(MIN)	OR	(MIN)
																	NON-URBAN	
PA2	C130	0.86	0.07	22.5	2.56	1.5	106	0.7	F	1.7	1.1	5.0	128.4	0.010	1.000	3.6	URBAN	5.0
PA3	C120	0.86	0.08	25.4	1.21	2.1	103	0.1	F	0.7	2.4	5.0	128.4	0.003	1.000	4.0	URBAN	5.0
PA4	A01	0.06	16.88	300.0	28.67	10.7	2036	34.9	E	8.9	3.8	14.6	2336.4	0.341	0.076	21.7	NON-URBAN	14.6
PA5	C110	0.86	0.02	13.9	5.19	0.9	27	1.5	F	2.4	0.2	5.0	40.5	0.028	1.000	3.1	URBAN	5.0
PA6	C50	0.86	0.23	81.9	2.20	3.0	110	1.7	F	2.6	0.7	5.0	192.3	0.019	1.000	3.6	URBAN	5.0
PA7	C30	0.86	0.07	38.5	3.60	1.8	95	4.0	F	4.0	0.4	5.0	133.1	0.039	1.000	3.3	URBAN	5.0
PA8	C40	0.86	0.08	50.8	3.14	2.1	85	4.4	F	4.2	0.3	5.0	135.6	0.039	1.000	3.3	URBAN	5.0
PA9	C70	0.86	0.20	29.3	2.04	1.9	94	2.3	F	3.0	0.5	5.0	123.7	0.022	1.000	3.4	URBAN	5.0
PA10	C170	0.86	0.11	25.6	2.46	1.6	99	0.8	F	1.8	0.9	5.0	124.5	0.012	1.000	3.5	URBAN	5.0
PA11	C200	0.86	0.26	30.1	1.88	1.9	219	0.5	F	1.5	2.5	5.0	249.5	0.007	1.000	4.4	URBAN	5.0
PA12	C180	0.86	0.09	26.5	2.84	1.6	67	0.0001	F	0.0	55.8	57.4	93.5	0.008	1.000	3.5	URBAN	5.0
PA13	C190	0.86	0.03	24.2	2.19	1.6	52	0.6	I F	1.6	0.5	5.0	76.1	0.011	1.000	3.3	URBAN	5.0

	STORM DRAINAGE SYSTEM DESIGN																			
	(RATIONAL METHOD PROCEDURE)																			
								10-YE	AR											
	Project: Project #: Date: File:	US 6 West, Hillcrest to A 118339-01 44547.00 Hydro_Proposed.xlsx	rrowgrass					Q=C*I*A										1-Hour Intensities 10-Year 0.745 I=(28.5 P ₁)/(10+T _C	s (P1)) ^{0.786}	
				DIRECT F	RUNOFF				Т	OTAL	. RUNOF	F	STREE	Т	PIPE			TRAVEL TIME		REMARKS
BASIN	DES.	AREA	Open	COEF.	tc	C*A	Ι	Q	tc	C*A	Ι	Q	SLOPE	DES	IGN SLOP	E PIPE	LENGTH	VEL.	tt	
	PT.	ACRES	% Imp.		(MIN)	(AC)	(IN/HR)	(CFS)	(MIN)	(AC)	(IN/HR)	(CFS)	(%)	Q (C	S) (%)	SIZE	(FT.)	(FPS)	(MIN)	
PA2	C130	0.07	100.00	0.87	5.0	0.06	2.53	0.2												
PA3	C120	0.08	100.00	0.87	5.0	0.07	2.53	0.2						_						
PA4	A01	16.88	7.57	0.13	14.6	2.23	1.71	3.8												
PA5	C110	0.02	100.00	0.87	5.0	0.02	2.53	0.0												
PA6	C50	0.23	100.00	0.87	5.0	0.20	2.53	0.5												
PA7	C30	0.07	100.00	0.87	5.0	0.06	2.53	0.2												
PA8	C40	0.08	100.00	0.87	5.0	0.07	2.53	0.2												
PA9	C70	0.20	100.00	0.87	5.0	0.17	2.53	0.4												
PA10	C170	0.11	100.00	0.87	5.0	0.10	2.53	0.2												
PA11	C200	0.26	100.00	0.87	5.0	0.23	2.53	0.6												
PA12	C180	0.09	100.00	0.87	5.0	0.08	2.53	0.2												
PA13	C190	0.03	100.00	0.87	5.0	0.03	2.53	0.1												

	STORM DRAINAGE SYSTEM DESIGN																				
	(RATIONAL METHOD PROCEDURE)																				
								100-Y	EAR												
	Project: Project #: Date: File:	US 6 West, Hillcrest to A 118339-01 44547.00 Hydro_Proposed.xlsx	rrowgrass					Q=C*I*A											1-Hour Intensitie: 100-Year 1.28 I=(28.5 P ₁)/(10+T _C	s (P1)) ^{0.786}	
				DIRECT F	RUNOFF				1	ΓΟΤΑΙ	RUNO	F	STREE	Т		PIPE			TRAVEL TIME		REMARKS
BASIN	DES.	AREA	Open	COEF.	tc	C*A	1	Q	tc	C*A	1	Q	SLOPE	DE	ESIGN	SLOPE	PIPE	LENGTH	VEL.	tt	
	PI.	ACRES	% Imp.	0.00	(MIN)	(AC)	(IN/HR)		(MIN)	(AC)	(IN/HR)	I (CFS)	(%)	Q ((CFS)	(%)	SIZE	(⊦⊺.)	(FPS)	(MIN)	
PAZ PA3	C130	0.07	100.00	0.90	5.0	0.06	4.34	0.3													
PA4	A01	16.88	7.57	0.47	14.6	7.97	2.95	23.5													
PA5	C110	0.02	100.00	0.90	5.0	0.02	4.34	0.1													
PA6	C50	0.23	100.00	0.90	5.0	0.21	4.34	0.9													
PA7	C30	0.07	100.00	0.90	5.0	0.06	4.34	0.3													
PA8	C40	0.08	100.00	0.90	5.0	0.07	4.34	0.3													
PA9	C70	0.20	100.00	0.90	5.0	0.18	4.34	0.8													
PA10	C170	0.11	100.00	0.90	5.0	0.10	4.34	0.4													
PA11	C200	0.26	100.00	0.90	5.0	0.23	4.34	1.0													
PA12	C180	0.09	100.00	0.90	5.0	0.08	4.34	0.4													
PA13	C190	0.03	100.00	0.90	5.0	0.03	4.34	0.1						1						1	

APPENDIX B. HYDRAULIC CALCULATIONS

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Type 16 on grade single 0.5%	<u>C130</u>	<u>C50</u>
Site Type (Urban or Rural)			
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination

USER-DEFINED INPUT

User-Defined Design Flows	User-Defined Design Flows												
Minor Q _{Known} (cfs)	0.5	0.2	0.5										
Major Q _{Known} (cfs)	2.0	0.3	0.9										

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	C130
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.5	0.2	0.5
Major Total Design Peak Flow, Q (cfs)	2.0	0.3	0.9
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.1
Major Flow Bypassed Downstream, Q _b (cfs)	0.7	0.0	0.1

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>C30</u>	<u>C120</u>	<u>C110</u>
Site Type (Urban or Rural)			
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	In Sump	In Sump
Inlet Type	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	0.2	0.2	0.0
Major Q _{Known} (cfs)	0.3	0.3	0.1

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	C50	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.1	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.1	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.2	0.2	0.0
Major Total Design Peak Flow, Q (cfs)	0.4	0.3	0.1
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	N/A	N/A

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>C200</u>	<u>C170</u>	<u>C70</u>
Site Type (Urban or Rural)			
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	0.6	0.2	0.4
Major Q _{Known} (cfs)	1.0	0.4	0.8

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	C200	C170
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.1	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.6	0.2	0.4
Major Total Design Peak Flow, Q (cfs)	1.0	0.6	0.8
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.1
Major Flow Bypassed Downstream, Q _b (cfs)	0.1	0.0	0.2

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>C40</u>	<u>C190</u>	<u>C180</u>
Site Type (Urban or Rural)			
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	In Sump
Inlet Type	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	0.2	0.1	0.2
Major Q _{Known} (cfs)	0.3	0.1	0.4

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	C70	No Bypass Flow Received	C190
Minor Bypass Flow Received, Q _b (cfs)	0.1	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.2	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.2	0.1	0.2
Major Total Design Peak Flow, Q (cfs)	0.5	0.1	0.4
Minor Flow Bypassed Downstream, Q _b (cfs)	0.1	0.0	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	0.2	0.0	N/A

	Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft	
	Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft	
	Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50		
	Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10		
ĺ	Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_	
	Street Hydraulics: OK - Q < Allowable Street Capacity' Total Inlet Interception Capacity	Q =	MINOR 0.1	MAJOR 0.3	cfs	
	Street Hydraulics: OK - Q < Allowable Street Capacity' Total Inlet Interception Capacity Total Inlet Carry-Over Flow (flow bypassing inlet)	Q = Q _b =	MINOR 0.1 0.0	MAJOR 0.3 0.0	cfs cfs	

inches

Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	1.73	1.73	ft	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	0.50	0.50		
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10		
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR		
Total Inlet Interception Capacity	Q =	0.5	0.8	cfs	
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.1	0.1	cfs	
Capture Percentage = Ω_{c}/Ω_{c} =	C% =	90	84	1%	

Length of a Single Only Thet (Grate of Curb Opening)	L ₀ -	3.00	5.00	μι	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	0.50	0.50		
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10		
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_	
Street Hydraulics: OK - Q < Allowable Street Capacity' Total Inlet Interception Capacity	Q =	MINOR 0.2	MAJOR 0.4	cfs	
Street Hydraulics: OK - O < Allowable Street Capacity' Total Inlet Interception Capacity Total Inlet Carry-Over Flow (flow bypassing inlet)	Q = Q _b =	MINOR 0.2 0.0	MAJOR 0.4 0.0	cfs cfs	

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 10	6 Combination	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	2.5	3.9	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	-
Depth for Grate Midwidth	d _{Grate} =	0.229	0.349	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.04	0.16	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.29	0.46	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.80	0.96	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.29	0.46	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Qa =	0.5	1.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.2	0.3	CTS

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 10	6 Combination]
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	2.5	3.9	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_{w} (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(C) =$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	-
Depth for Grate Midwidth	d _{Grate} =	0.229	0.349	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.04	0.16	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.39	0.61	
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.39	0.61	
		MINOR	MAJOR	1
Total Inlet Interception Capacity (assumes clogged condition)	Qa =	0.4	1.3	cts
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.0	0.1	CTS

- 1	Lenger of a single office file (of de of carb opening)	-0	5.00	5.00	10	
	Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	1.73	1.73	ft	
	Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	0.50	0.50		
	Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10		
	Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_	
	Total Inlet Interception Capacity	Q =	0.6	0.9	cfs	
	Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.1	cfs	
	Capture Percentage = Q_a/Q_a =	C% =	99	86	%	

What of a offic of ace (calmor be greater than W, outler What)	•••• -	1.75	1.75	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.3	0.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage - 0 /0 -	C% =	100	99	1 %

Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 = [$	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width) V	W _o = [1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5) C_{f}	-G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Cr	_f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.4	0.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =[0.1	0.2	cfs
Capture Percentage -0.00 -	% =ľ	87	79	9/0

[Length of a Single Only Thiel (Grate of Curb Opening)	L ₀ -	5.00	5.00	μι	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50		
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10		
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_	
Total Inlet Interception Capacity	Q =	0.2	0.3	cfs	
Total Inlet Carry-Over Flow (flow hypassing inlet)	^	0.1		ofe	
Total The Carry-Over Llow (now bypassing file)	$Q_b =$	0.1	0.2	CIS	

which of a only of the (cannot be greater than w, outlet which)	vv ₀ –	1.75	1.75	Jic	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	0.50	0.50		
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10		
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR		
Total Inlet Interception Capacity	Q =	0.1	0.1	cfs	
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b = [$	0.0	0.0	cfs	
Canture Percentage - 0 /0 -	C% =	100	99	%	

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 10	6 Combination]
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	2.5	3.9	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(C) =$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.66	0.66	
Low Head Performance Reduction (Calculated)	-	MINOR	MAJOR	-
Depth for Grate Midwidth	d _{Grate} =	0.229	0.349	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.04	0.16	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.29	0.46	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.80	0.96	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.29	0.46	
	- 1	MINOR	MAJOR	1
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a = $	0.5	1.9	cts
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.2	0.4	CTS

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Hydraulic Grade Line (In) (ft)	Headloss (ft)	Headloss Method	Headloss Coefficient (Standard)
C120	7,138.64	7,132.50	7,132.79	0.10	Standard	1.500
C130	7,138.10	7,132.20	7,132.47	0.09	Standard	1.500
C110	7,138.43	7,132.00	7,132.14	0.03	Standard	1.500
C50	7,137.12	7,130.43	7,131.60	0.42	Standard	1.500
C70	7,137.43	7,131.10	7,131.73	0.02	Standard	1.500
C40	7,132.24	7,129.51	7,129.86	0.12	Standard	1.500
C30	7,132.40	7,126.50	7,126.93	0.15	Standard	1.500
C190	7,140.87	7,136.00	7,136.18	0.06	Standard	1.500
C200	7,140.64	7,134.25	7,134.78	0.18	Standard	1.500
C180	7,140.07	7,135.00	7,135.31	0.10	Standard	1.500
C170	7,139.69	7,133.30	7,133.64	0.11	Standard	1.500
C305	7,139.93	7,132.36	7,132.82	0.01	Standard	1.500

FlexTable: Catch Basin Table

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Headloss Coefficient (Standard)
C100	7,138.98	7,131.96	7,132.29	7,132.22	Standard	0.800
C90	7,138.83	7,131.78	7,132.13	7,132.06	Standard	0.700
C80	7,139.73	7,131.28	7,132.05	7,131.88	Standard	0.800
C60	7,138.35	7,130.77	7,131.71	7,131.59	Standard	0.800
C20	7,133.56	7,125.53	7,125.59	7,125.35	Standard	0.800
C10	7,133.01	7,124.50	7,125.40	7,125.10	Standard	1.000
C160	7,141.14	7,132.97	7,133.44	7,133.34	Standard	0.800
C150	7,140.82	7,132.42	7,132.97	7,132.90	Standard	0.700
C140	7,140.57	7,132.30	7,132.90	7,132.78	Standard	0.700
C136	7,140.10	7,132.16	7,132.81	7,132.68	Standard	0.700

FlexTable: Manhole Table

FlexTable: Conduit Table

Label	Invert (Start) (ft)	Invert (Stop) (ft)	Length (User Defined)	Slope (Calculated) (ft/ft)	Diameter (in)	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)
			(ft)	(10,10)				(city)	(ft)	(ft)
C115	7,132.50	7,132.00	18.0	0.028	24.0	0.31	3.63	37.70	7,132.69	7,132.29
C125	7,132.20	7,132.00	17.0	0.012	24.0	0.27	2.58	24.54	7,132.38	7,132.29
C95	7,131.96	7,131.86	20.0	0.005	24.0	0.58	2.41	16.00	7,132.22	7,132.13
C105	7,132.00	7,131.86	8.0	0.018	24.0	0.08	2.04	29.92	7,132.11	7,132.13
C85	7,131.78	7,131.48	60.0	0.005	24.0	0.66	2.51	16.00	7,132.06	7,132.05
C75	7,131.28	7,130.97	37.0	0.008	24.0	2.92	4.66	20.71	7,131.88	7,131.71
C55	7,130.77	7,130.63	25.0	0.006	24.0	3.70	4.31	16.93	7,131.59	7,131.60
C65	7,131.10	7,130.97	24.0	0.005	24.0	0.78	2.71	16.65	7,131.71	7,131.71
C45	7,130.43	7,125.73	34.0	0.138	24.0	4.59	14.32	84.11	7,131.18	7,126.06
C15	7,124.55	7,124.50	6.0	0.008	24.0	5.17	5.47	20.65	7,125.35	7,125.40
C05	7,124.30	7,124.12	35.0	0.005	24.0	5.17	4.59	16.22	7,125.10	7,124.90
C35	7,129.51	7,126.50	25.0	0.120	12.0	0.31	6.67	12.36	7,129.74	7,126.93
C25	7,126.50	7,124.80	78.0	0.022	18.0	0.58	4.20	15.51	7,126.78	7,125.59
C185	7,136.00	7,134.07	49.0	0.039	24.0	0.12	3.07	44.89	7,136.12	7,134.15
C195	7,134.25	7,134.10	23.0	0.007	24.0	1.01	3.12	18.27	7,134.60	7,134.42
C155	7,132.97	7,132.50	94.0	0.005	24.0	1.13	2.94	16.00	7,133.34	7,132.97
C175	7,135.00	7,134.81	17.0	0.011	24.0	0.35	2.74	23.91	7,135.20	7,134.98
C165	7,133.30	7,133.19	19.0	0.006	24.0	0.43	2.32	17.21	7,133.52	7,133.41
C145	7,132.42	7,132.30	26.0	0.005	24.0	1.48	3.09	15.37	7,132.90	7,132.90
C137	7,132.30	7,132.16	26.0	0.005	24.0	1.91	3.52	16.60	7,132.78	7,132.81
C135	7,132.16	7,131.82	66.0	0.005	24.0	2.26	3.64	16.24	7,132.68	7,132.32
C300	7,132.36	7,132.26	17.0	0.006	24.0	0.35	2.19	17.35	7,132.81	7,132.81

Culvert Calculator Report Cross Culvert A

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	7,138.00	ft	Headwater Depth/Heigh	nt 0.86	
Computed Headwater Elev	re 7,137.48	ft	Discharge	25.00	cfs
Inlet Control HW Elev.	7,137.23	ft	Tailwater Elevation	7,130.00	ft
Outlet Control HW Elev.	7,137.48	ft	Control Type E	Intrance Control	
Grades					
Upstream Invert	7.134.90	ft	Downstream Invert	7.132.08	ft
Length	82.00	ft	Constructed Slope	0.034390	ft/ft
Hydraulic Profile					
Profile	\$2		Depth Downstream	0 06	ft
Slope Type	Steen		Normal Denth	0.90	ft
Flow Regime	Supercritical		Critical Depth	1.61	ft
Velocity Downstream	12.76	ft/s	Critical Slope	0.004410	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Concrete		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	7,137.48	ft	Upstream Velocity Head	d 0.65	ft
Ке	0.50		Entrance Loss	0.32	ft
Inlet Control Properties					
Inlet Control HW Elev	7 137 23	ft	Flow Control	Unsubmerged	
Inlet Type Square edg	r, ior.20 e w/headwall	it.	Area Full		ft²
K	0.00980		HDS 5 Chart	1.1	
M	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

Culvert Designer/Analyzer Report Culvert B

N/A

_ _ _ _ _ _

Analysis Cor	nponent						
Storm Ever	nt	Check	D	ischarge		23.50	cfs
Peak Discha	rge Method: User-Sp	ecified					
Design Dis	charge	16.00 c	fs C	heck Dischar	ge	23.50	cfs
Tailwater Co	nditions: Constant Ta	ailwater					
Tailwater E	levation	7,137.50 ft					
						•	
Name	Description	Di	scharge	HW Elev.	Velocity		
Culvert-1	1-19x30 inch Hor	iz Ellipse 1	2.63 cfs	7,139.24 ft	3.93 ft/s		
Weir	Broad Crested	1	0.87 cfs	7,139.24 ft	N/A		

23.50 cfs 7,139.24 ft

Total

Culvert Designer/Analyzer Report Culvert B

Component:Culvert-1

Culvert Summary					
Computed Headwater Eleva	7,139.24	ft	Discharge	12.63	cfs
Inlet Control HW Elev.	7,139.14	ft	Tailwater Elevation	7,137.50	ft
Outlet Control HW Elev.	7,139.24	ft	Control Type	Entrance Control	
Headwater Depth/Height	1.09				
Grades					
Upstream Invert	7,137.50	ft	Downstream Invert	7,136.00	ft
Length	129.00	ft	Constructed Slope	0.011628	ft/ft
Hydraulic Profile					
Profile Com	positeS1S2		Depth, Downstream	1.50	ft
Slope Type	Steep		Normal Depth	0.80	ft
Flow Regime	N/A		Critical Depth	1.03	ft
Velocity Downstream	3.93	ft/s	Critical Slope	0.004438	ft/ft
Section					
Section Shape Horizo	ontal Ellipse		Mannings Coefficient	0.013	
Section Material	Concrete		Span	2.52	ft
Section Size	19x30 inch		Rise	1.60	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	7,139.24	ft	Upstream Velocity Hea	id 0.47	ft
Ke	0.50		Entrance Loss	0.24	ft
Inlet Control Properties					
Inlet Control HW Elev.	7,139.14	ft	Flow Control	Unsubmerged	
ar entelgēywe th headwall (horizo	ntal ellipse)		Area Full	3.3	ft²
K	0.01000		HDS 5 Chart	29	
M	2.00000		HDS 5 Scale	1	
U	0.03980		Equation Form	1	
Y	0.67000				

Culvert Designer/Analyzer Report Culvert B

Component:Weir

Hydraulic Component(s): Broad Crested							
Discharge	10.87 cfs	Allowable HW Elevation	7,139.24 ft				
Weir Coefficient	3.00 US	Length	30.00 ft				
Crest Elevation	7,139.00 ft	Headwater Elevation	7,139.24 ft				

ULLEVGSubject:Riprap Apron String For Single Circular ConduitCheckel:Sheet:1I. Given InformationStructure Name and Location:Endescion A01Tailwater Depth (Y) = unknown, assume = 0.4*D111Q25.00c.f.s. (design flow)Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Assume flow is Supercritical (Max.=7.0 (ps if Clay, and 5.0 (ps if Sandy))X. Manning Formula - Input ColventRaster ResultsV13.18($p_{\rm s}$ ($p_{\rm s}$ Colspan="2">Colspan="2"V13.18Colspan="2" $y_{\rm r}D$ Colspan="2" $y_{\rm r}D$ <th col<="" th=""><th>Use Figure 9-35 to $\frac{1}{2\text{Tan}\Theta} = \frac{1}{5. \text{ Lp, Length of Prote}}$ where V is m $L_{p=} 1/2 \text{ Tan } \Theta * (L_{p=} 6.2 * L_{p})$</th><th>the right to find 6.2 ction max. allow velocit Q/V 5.00 - 7.23</th><th>1/(2TanΘ) = Expansion Factor y / y_t / 1.2 ft</th><th>- D) - 3.00</th><th>)</th><th></th><th>EXPANSION FACTOR, 214016</th><th>52 000 50</th><th></th><th>5 6</th><th>.7.8</th></th>	<th>Use Figure 9-35 to $\frac{1}{2\text{Tan}\Theta} = \frac{1}{5. \text{ Lp, Length of Prote}}$ where V is m $L_{p=} 1/2 \text{ Tan } \Theta * (L_{p=} 6.2 * L_{p})$</th> <th>the right to find 6.2 ction max. allow velocit Q/V 5.00 - 7.23</th> <th>1/(2TanΘ) = Expansion Factor y / y_t / 1.2 ft</th> <th>- D) - 3.00</th> <th>)</th> <th></th> <th>EXPANSION FACTOR, 214016</th> <th>52 000 50</th> <th></th> <th>5 6</th> <th>.7.8</th>	Use Figure 9-35 to $\frac{1}{2\text{Tan}\Theta} = \frac{1}{5. \text{ Lp, Length of Prote}}$ where V is m $L_{p=} 1/2 \text{ Tan } \Theta * (L_{p=} 6.2 * L_{p})$	the right to find 6.2 ction max. allow velocit Q/V 5.00 - 7.23	1/(2TanΘ) = Expansion Factor y / y _t / 1.2 ft	- D) - 3.00)		EXPANSION FACTOR, 214016	52 000 50		5 6	.7.8
OULT NGSubject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of1. Situcture Name and Location:Endescion A01Tailwater Depth (Y) =Difference0.013C.f.s.(design flow)D/3 =3.001.2n.Assume flow in SupportificatiV13.18(.p.p.s.(Max. = 7.0 (ps if Clay, and 5.0 (ps if Sandy))Admong Formula(Max. = 7.0 (ps if Clay, and 5.0 (ps if Sandy))V13.18(.p.p.s.V13.18(.p.p.s.V13.18(.p.p.s.)/2 for supercritical flow)y/D01.00y/D1.00V1.00V1.00V1.00V1.00V1.00V1.00V1.00V0V <td>Use Figure 9-35 to $\frac{1}{2\text{Tan}\Theta} =$ 5. Lp, Length of Prote where V is m $L_{p=} = 1/2 \text{ Tan} \Theta^*($ $L_{p=} = 6.2 *($</td> <td>the right to find 6.2 ction max. allow velocit Q/V (5.00 = 7.23</td> <td>1/(2TanΘ) = Expansion Factor y / y_t / 1.2 ft</td> <td>- <i>D</i>) - 3.00</td> <td>)</td> <td></td> <td>EXPANSION FACTOR, 21tan.6</td> <td>-02 200 23</td> <td></td> <td>60-60</td> <td></td>	Use Figure 9-35 to $\frac{1}{2\text{Tan}\Theta} =$ 5. Lp, Length of Prote where V is m $L_{p=} = 1/2 \text{ Tan} \Theta^*($ $L_{p=} = 6.2 *($	the right to find 6.2 ction max. allow velocit Q/V (5.00 = 7.23	1/(2TanΘ) = Expansion Factor y / y _t / 1.2 ft	- <i>D</i>) - 3.00)		EXPANSION FACTOR, 21tan.6	-02 200 23		60-60		
OULT NGSubject:Riprap Apron Staing For Single Circular ConduitChecked:Shot1OULT NGSubject:Riprap Apron Staing For Single Circular ConduitChecked:Shot1OULT NGSitucture Name and Location:Endestion A01Tailwater Depth (Y) =OULT NGQC.f.s.(design flow)D/3 = 13.00TQ1.00Normal Situation Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Addition Colspan="2"OutputV3.16VOutputVColspan="2"VVVVVVVVVVVVV <th col<="" td=""><td>Use Figure 9-35 to $\frac{1}{2\text{Tan}\Theta} =$ 5. Lp, Length of Prote where V is m $L_{p=} = 1/2 \text{ Tan} \Theta$ *($L_{p=} = 6.2$ *($L_{p=}$</td><td>the right to find 6.2 ction max. allow velocit Q/V (5.00 = 7.23</td><td>1/(2TanΘ) = Expansion Factor y / y_t / 1.2 ft</td><td>- <i>D</i>) - 3.00</td><td>)</td><td></td><td>EXPANSION FACTOR, 1 C 21an 6 C 7 C 7 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1</td><td>02,0023</td><td></td><td>60-60</td><td></td></th>	<td>Use Figure 9-35 to $\frac{1}{2\text{Tan}\Theta} =$ 5. Lp, Length of Prote where V is m $L_{p=} = 1/2 \text{ Tan} \Theta$ *($L_{p=} = 6.2$ *($L_{p=}$</td> <td>the right to find 6.2 ction max. allow velocit Q/V (5.00 = 7.23</td> <td>1/(2TanΘ) = Expansion Factor y / y_t / 1.2 ft</td> <td>- <i>D</i>) - 3.00</td> <td>)</td> <td></td> <td>EXPANSION FACTOR, 1 C 21an 6 C 7 C 7 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1</td> <td>02,0023</td> <td></td> <td>60-60</td> <td></td>	Use Figure 9-35 to $\frac{1}{2\text{Tan}\Theta} =$ 5. Lp, Length of Prote where V is m $L_{p=} = 1/2 \text{ Tan} \Theta$ *($L_{p=} = 6.2 $ *($L_{p=}$	the right to find 6.2 ction max. allow velocit Q/V (5.00 = 7.23	1/(2TanΘ) = Expansion Factor y / y _t / 1.2 ft	- <i>D</i>) - 3.00)		EXPANSION FACTOR, 1 C 21an 6 C 7 C 7 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	02,0023		60-60	
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1Colspan="2">Colspan="2">Checked:Sheet1Colspan="2">Colspan="2">Checked:Sheet1Colspan="2">Colspan="2">Checked:Sheet1Colspan="2">Colspan="2">Checked:Sheet1Colspan="2">Colspan="2">Checked:Checked:Sheet1Colspan="2">Colspan="2">Checked:Checked:Sheet1OptionChecked:Checked:Sheet1NoChecked:Checked:Checked:Sheet1OptionChecked:Checked:Checked:Checked:VOptionChecked:Checked:Checked:Checked:Checked:Checked:Checked:VOptionChecked:Checked:Checked:SheetChecked:Ch	Use Figure 9-35 to $\frac{1}{2\text{Tan}\Theta} = \frac{1}{5. \text{ Lp, Length of Prote}}$ where V is m $L_{p=} 1/2 \text{ Tan} \Theta$ *($L_{p=} 6.2$ *(the right to find 6.2 ction max. allow velocit Q/V 5.00	1/(2TanΘ) = Expansion Factor y / y _t / 1.2	- <i>D</i>) - 3.00)		EXPANSION FACTOR, 1 C 2 4010 C 2 0 C	02 00 23 10		00.60		
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given Information[Structure Name and Location:Endsection AD10 $\frac{25,00}{n}$ c.f.s(design flow)0 $\frac{30,00}{n}$ ft.(ippe dameter)0 $\frac{30,00}{n}$ ft.(ippe dameter)0 $\frac{30,00}{n}$ ft.(pipe dameter)0.013(Manning's n)Allowable Velocity =f.g.Assume flow isSupercritical/Suboritical2. Manning Formula - Input CulvertMaster Results $\sqrt{13.18}$ f.p.s.(valocity)y, 0.94 ft. $q/D^{1.5}$ Q $D_1^{1.5}$ $Q/D^{1.5}$ Q_1 $D_1^{1.5}$ $Q/D^{1.5}$ Q_2 Q_2 $Q/D^{1.5}$ Q_2 Q_2 $Q/D^{1.5}$ Q_2 Q_2 $Q/D^{1.5}$ Q_2 Q_2 $Q/D^{1.5}$ Q_2	Use Figure 9-35 to $\frac{1}{2\text{Tan}\Theta} = \frac{1}{5. \text{ Lp, Length of Prote}}$ where V is m $L_{p=} \frac{1/2 \text{ Tan} \Theta}{7}$	the right to find 6.2 ction nax. allow velocit Q/V	1/(2Tan Θ) = Expansion Factor y / y,	- D)			xpansion Factor, 1 21an9 -2 - 5 - 9 - 2	02 00 23 10		60 e 0		
Subject:Riprap Apton Sizing For Single Circular ConduitChecked:Sheet1of11. Given Information[Structure Name and Location:Endection AD103.00cf.s(design flow)Information12n.03.00ft.(pipe dameter)unknown, assume 0.4701.2n.0.0130.0013ft.(pipe dameter)Allowable Velocity:3.00ft.1.000Assume flow isSupercritical Supercritical Supercritical Supercritical Supercritical Supercritical Supercritical Supercritical flow)N.N.N.1.0002. Manning Formula - Input CulvertNaster ResultsV13.18f.p.s.(velocity)N.N.N.N.00.31ft.(normal depth of supercritical flow)N.N.N.N.N.N.N.00.015=0.04j.g. fsupercriticalN.N	Use Figure 9-35 to 1 2Tan⊖ = 5. Lp, Length of Prote where V is m	the right to find 6.2 ction nax. allow velocit	1/(2Tan⊖) = Expansion Factor				NSION FACTOR, <u>1</u> 21401 6 2 4 2 5 2 9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	02 200 23		60 e0		
Subject: Riprap Apron Sizing For Single Circular ConduitChecked: Sheet 1 of 1Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet 1 of 1Colspan="2">1. Given Information025.00 0cf.s(design flow) (lippe single)Tailwater Depth (Y) = unknown, assume 3.0 +1002003 1.000 Assume flow is Supercriticalcf.s(design flow) (lippe single)D / 3 = 1.000 Allowable Velocity = 1.000 Allowable Velocity = 1.000 Allowable Velocity = 1.000 Allowable Velocity = 1.000 Allowable Velocity = 1.000 1.0131.000 1.000 1.0132. Manning Formuta - Input CulvertMaster ResultsV13.18f.p.s.(velocity) D_1 f. y_{10} 0.31 1.97ft.(normal depth of supercritical flow) D_1 f supercritical D_1 f supercritical $QiD^{1.5}$ 0.04 y_{10} 1.2/ n_{10} n_{10} y_{10} 1.2/ n_{10} n_{10} y_{10} 1.2/ n_{10} n_{10} $QiD^{1.5}$ 9.04 y_{10} n_{11} n_{11} y_{10} 1.2/ n_{10} n_{10} y_{10} 1.2 n_{10} n_{10} n_{10} y_{10} 1.2 n_{10} n_{10} y_{10} n_{10} n_{10} n_{10} y_{10} n_{10} n_{10} n_{10} y_{10} n_{10} n_{10} n_{10} y_{10} n_{10} n_{10} n_{10} <td>Use Figure 9-35 to 1 2Tan⊖ = 5. Lp, Length of Prote</td> <td>the right to find</td> <td>1/(2Tan⊖) = Expansion Factor</td> <td></td> <td></td> <td></td> <td>- 7 - 6 - 6 - 5 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -</td> <td>0.5 00 23</td> <td>0,00</td> <td>8⁰⁰ 60</td> <td></td>	Use Figure 9-35 to 1 2Tan⊖ = 5. Lp, Length of Prote	the right to find	1/(2Tan⊖) = Expansion Factor				- 7 - 6 - 6 - 5 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	0.5 00 23	0,00	8 ⁰⁰ 60		
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endesction A01025.00c.f.s(design flow)Tailwater Depth (Y,) = unknown, assume = 0.4*D1.2ft.03.00r.f.f.(jpe diameter)D / 3 =3.00ft/ 3 ==1.000Assume flow isSupercritical/SuborticalWarrent 20N/2ft/ 3 ==1.0002. Manning Formula - Input CulvertMaster ResultsV13.18f.p.s.(velocity)y,0.94ft.(normal depth of supercritical flow)y/D0.31m.m.ft supercriticalQD15=0.0/ (1.37)15QD15=0.40/y/D-1.2y/D=0.40/y/2ft supercriticaly/D=0.40/1.5ft.y/D=0.40/1.5ft.y/D=0.300Per Fig 9-38, use Type1.6>6.0 by -0fride Quice2-9=18in e1.5ft.Hinimum Thickness of digo2-9=18in e1.5ft.Horizotta of Protectionfroud Quistion of Quice- <td>Use Figure 9-35 to 1 2Tan⊖ =</td> <td>the right to find</td> <td>1/(2Tan⊖) = Expansion Factor</td> <td></td> <td></td> <td></td> <td>-4 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7</td> <td>02 00 23</td> <td>07 00</td> <td></td> <td></td>	Use Figure 9-35 to 1 2Tan⊖ =	the right to find	1/(2Tan⊖) = Expansion Factor				-4 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	02 00 23	07 00			
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endesction A01025.00 0cf.s(design flow) (lpps stope)Tailvater Depth (Y,) = unknown, assume = 0.4+D1.2ft.02003 0ft.(pips stope) (Manning's n) Allowable Velocity = 51.2ft.2. Manning FormutaInpercentical SupercriticalSupercritical/Subcritical3.00ft.2. Manning FormutaInpercentical D3.00ft.(velocity) Dgt.ft.y, D0.31 Dft.(velocity) Dgt.gt.ft.y, D0.31 D1.97ft.D_s(D=y,)/2, for supercritical flow)gt.ft.y/D0.31 D1.97ft.D_s(D=y,)/2, for supercritical flow)gt.gt.y/D1.2 D/3.00ft.ft.ft.y/D1.2 D/3.00ft.ft.gt.y/D1.2 D/3.00ft.ft.ft.y/D1.2 D/3.00ft.ft.ft.y/D1.2 D1.3ft.ft.ft.y/D1.2 D1.2ft.ft.ft.y/D1.2 D1.2ft.ft.ft.y/D1.2 D1.2ft.ft.ft.y/D1.2 D1.2ft.ft. <t< td=""><td>Use Figure 9-35 to = 2Tan⊖</td><td>the right to find</td><td>1/(2Tan⊖) = Expansion Factor</td><td></td><td></td><td></td><td>0. 5 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3</td><td>-0,5 0025</td><td></td><td></td><td></td></t<>	Use Figure 9-35 to = 2Tan⊖	the right to find	1/(2Tan⊖) = Expansion Factor				0. 5 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	-0,5 0025				
ULLEVIG ULLEVIGSubject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01025.00c.f.s(design flow) (Manning's n)Tailwater Depth (Yr) = unknown, assume = 0.4*D1.2ft.03.00ft.(pipe diameter) (Manning's n)D/3 =3.00ft/.g1. diversities0.0343ft./ft.(pipe signed excession)Manning's n) (Max=7.0 fps if Clay, and 5.0 fps if Sandy)2. Manning Formula - Input CulvertMaster ResultsV13.18f.p.s.(velocity) p,0.331f.p.s.y,/D0.31f.p.s.(velocity) p, if supercritical flow)y,/D0.31f.p.s.(velocity) p, if supercritical flow)y,/D0.31f.p.s.(velocity) p, if supercritical flow)y,/D1.97ftD_a=(D+Y_a)/2, for supercritical flowy,/D1.97ftD_a=(D+Y_a)/2, for supercritical flowy,/D1.12/3.00y,/D1.2/3.00y,/D1.2/y,/D1.2/y,/D1.2/y,/D1.2/y,/D1.5ft.y,/D1.5ft.y,/D1.5ft.y,/D1.5ft.y,/D2.5001.6y,/D1.5ft.y,/D1.5ft.y,/D1.5 <td< td=""><td>Use Figure 9-35 to</td><td>the right to find</td><td>1/(2TanΘ) = Expansion Factor</td><td></td><td></td><td></td><td>- 5</td><td>20023</td><td></td><td></td><td></td></td<>	Use Figure 9-35 to	the right to find	1/(2TanΘ) = Expansion Factor				- 5	20023				
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet 1 of 1Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet 1 of 11.000Colspan="2">Colspan="2">Checked:Sheet 1 of 1Checked:Sheet 1 of 1Checked:Sheet 1 of 1Checked:Checked:Sheet 1 of 1Checked:Checked:Sheet 1 of 1Checked:Checked:Checked:Sheet 1 of 1Checked:Checked:Checked:Checked:Checked:Checked:Checked:Checked:Checked:Checked:Checked:Checked:Checked:A colspan="2">Checked:Checked:Checked:Checked:Checked:A colspan="2">Checked:Checked:Checked:Checked:Checked:Checked:Checked:Checked:Checked:Checked:A colspan="2">Checked:Checked:Checked:Checked:A colspan="2Checked: <th colspa<="" td=""><td>Use Figure 9-35 to</td><td>the right to find</td><td>1/(2Tan⊖) Expansion</td><td></td><td></td><td></td><td>- 5 - 5</td><td>\$20</td><td></td><td></td><td></td></th>	<td>Use Figure 9-35 to</td> <td>the right to find</td> <td>1/(2Tan⊖) Expansion</td> <td></td> <td></td> <td></td> <td>- 5 - 5</td> <td>\$20</td> <td></td> <td></td> <td></td>	Use Figure 9-35 to	the right to find	1/(2Tan⊖) Expansion				- 5 - 5	\$20			
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet 1 of 1Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet 1 of 11.000Circular ConduitChecked:Sheet 1 of 1Tailwater Depth (Y) = Unknown, assume = 0.4*DTailwater Depth (Y) = Unknown, assume = 0.4*DD 3.00f. f.S, 0.03450f. f.1.000Assume flow is Supercritical Supervitical SuperviticalColspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"V1.000Assume flow is Supercritical SuperviticalColspan="2"V13.18f. f.y/DQID 1.5QID 1.5QID 1.5QID 1.5	Use Figure 9-35 to	the right to find	1/(2Tan⊖)				7					
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endesction A01Q25.00c. f.s(design flow)Tailwater Depth (Y) =D3.00ft.(pipe diameter)D/3 =3.00ft/3=1.000Assume tow isSuperritical Superritical Superritical Superritical SuperriticalD/3 =3.00ft/3=1.0002. Manning Formula - Input Culver/Master ResultsV13.18f.p.s.(velocity)(wax=7.0 fps if Clay, and 5.0 fps if Sandy)y,/D0.31g.g.0.94ft.(normal depth of supercritical flow)Image: Size of the supercritical Supercritical Supercritical Give of the supercritical flowy,/D0.31g.g.D if subcritical org.g.Image: Glay Give of the supercritical Give of the supercritical flowy,/D1.2/3.00g.g.Image: Glay Give of the supercritical flowImage: Glay Give of the supercritical flowy,/D0.12/3.00g.g.Image: Glay Give of the supercritical flowImage: Glay Give of the supercritical flowy,/D1.2/3.00g.g.Image: Glay Give of the supercritical fl							7					
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00c. f.s.(design flow)Talwater Depth (Yt) = unknown, assume = 0.4*D1.2ft.D3.00ft.(pipe diameter)D/3 =3.00ft./3=1.000Assume flow isSupercriticalSupercritical/SubcriticalCreation A01Talwater Depth (Yt) = unknown, assume = 0.4*D1.2ft.1.0002. Manning Formula - Input CuverMaster ResultsV13.18ft.p.s.(velocity) y_n0.94ft.(normal depth of supercritical flow) y_{μ}/D 0.31 D_a1.97ftD_a=(D+y_a)/2, for supercritical flow000 y_{μ}/D 0.31 D_aD_f^{1.5}D_if supercritical D_a if supercritical QID^{1.5}2.5.00/ (1.97)1.500 y_{μ}/D 0.12/3.00 y_{μ}/D 1.2/3.00	2	5.00			,		1 1					
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)Tailwater Depth (Y,) =n0.013c.f.s(design flow)Tailwater Depth (Y,) =n0.013r.f.f.(pipe diameter)D / 3 =S,0.03450f./f.(pipe slope)D / 3 =Assume flow isSupercritical/Subcritical/SubcriticalS. Manning Formula - Input CulvertMaster ResultsV13.18f.p.s.(velocity)y,0.94ft.(normal depth of supercritical flow)y/D0.31n.g.=(D+y_n)/2, for supercritical flow3. Required Rock SizeQ/D ^{1.5} D if subcritical or D_n if supercriticalQ/D ^{1.5} 9.04y/Dy/D0.40Per Fig 9-38.use Typedigo =aminimum Thickness of dogaTimm = 2.4 dog2Minimum Thickness of dogaTimm = 2.4 dog2Minimum Thickness of dogaTimm = 2.4 dog2Minimum Thickness of dogaNum = 2.4 dog2Minimum	=	3.00	2.5	so increase I	ov 1/4D for every 1				1 1	1 1		
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)Tailwater Depth (Y,) =D3.00ft.(pipe diameter)D / 3 =S.0.03450ft./ft.(pipe diameter)D / 3 =S.0.03450ft./ft.(pipe slope)Allowable Velocity =5Assume flow isSupercritical/Subcritical/SubcriticalI./ft.(pipe slope)V13.18f.p.s.(velocity)y,0.94ft.(normal depth of supercritical flow)y,/D0.31f.p.s.(velocity)y,0.94ft.(normal depth of supercritical flow)y,/D1.97ftD_=(D+y_y)/2, for supercritical flow)y,/D1.2ft.(normal depth of supercritical flow)y,/D1.97ftD_=(D+y_y)/2, for supercritical flow)y,/D1.2/3.00y/D1.2/3.00y/D1.2/3.00y/D1.2/3.00y/D1.2/3.00y/D1.2/3.00y/D1.2/3.00y/D2.49=Minimum Thickness of dog9in.Tuss = 2* dog299=18in. =1.5ft.HH-Cauto f		25.00	=	1.6 > 6.0 by ~	٥		8		- <u> </u>	⊎ = Expan	sion Angle	
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00 Dc. f.s.(design flow) (pipe diameter) (Manning's n)Tailwater Depth (Yt) = unknown, assume = 0.4*D1.2ft.Q3.00 n0.013 (Manning's n)D / 3 =3.00ft./f./3.00ft./f./Assume flow isSupercriticalSupercritical/SubcriticalManning's n) (Manning's n)Allowable Velocity = (Max.=7.0 pi fl Clay, and 5.0 fps if Sandy)2. Manning Formula - Input CulvertMaster ResultsV13.18 D, 9.44f.p.s.(velocity) D, 150.915y,n/D0.31 D, 197ftD, s=(D+y_n)/2, for supercritical flow)y,n/D0.31 D, 197ft supercritical0Q/D ^{1.5} =0.40Per Fig 9-38, Webuse Type0.38 D, 197ft pracePer Fig 9-38, Monuse Type0.38 D, 19710.38 D, 197Per Fig 9-38, Monuse Type0.38 D, 19713.00 D, 15Per Fig 9-38, Monuse Type0.38 D, 19713.00 D, 197Per Fig 9-38, Monuse Type0.38 D, 19713.00 D, 197Minimum Thickness of dso Type0.38 D, 19713.00 D, 19815.5Minimum Thickness of dso Type13.8 D, 19715.510.5Minimum Thickness of dso Type0.38 D, 19716.0717.5<	Froude Parameter	1								A = Erona	sion Angle	
Subject: Riprap Apron Sizing For Single Circular ConduitChecked: Sheet 1 of 1Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet 1 of 1Image: Conduct Conduc	A Extent of Brotoctic								VH		24	
Subject: Riprap Apron Sizing For Single Circular ConduitChecked: Sheet 1 of 1Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet 1 of 1Image: Conduct Conduc	$T_{MIN} = 2 * d_{50} =$	2	*	=18	. in. =	1.5 ft.		ļ,	H		18	
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of1. Given InformationStructure Name and Location:Endsection A011. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)D3.00ft.(pipe diameter)N0.013(Manning's n)Assume flow isSupercriticalSo0.03450ft./ft.Assume flow isSupercritical2. Manning Formula - Input CulvertMaster ResultsV13.18f.p.s.V13.18f.p.s.y/D0.31(velocity)y_n0.94ft.(normal depth of supercritical flow)y_n/D0.31Q/D ^{1.5} =Q/D ^{1.5} =0.04y/D=0.40Per Fig 9-38,useuseTiprapdgo ==0.38ftdgo ==0.38ftcture triated dgo =0.38triated control and contait and citationy/D0.38triated contained dgo =triated contained dgo =end0.38fttheorem filtingsupercenticaltriated contained dgo =triated contained dgo =triated contained con	Minimum Thicknes	s of d ₅₀	* 0	_ 40	in -	4 5 5			M		12	
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)Inductory and the second s	Minima une Thiele	d ₅₀ =	= 0.38	tt cneck from po supercritical	Jung eq. 9-18 into eq	. 9-16 TOP			L		9	
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Civen InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)Unknown, assume = 0.4*D1.2ft.D3.00ft.(pipe diameter)D / 3 =3.00ft/73 =1.000Assume flow isSupercritical SupercriticalSupercritical SubjecticalImage: Constraint of the supercritical supercritical SubjecticalMax.e7.0 fps if Clay, and 5.0 fps if Sandy)2. Manning Formula - Input CulvertMaster ResultsV13.18f.p.s.(velocity)y,0.94ft.(normal depth of supercritical flow)y/D0.31D_7.15D if subcritical orQ/D ¹⁵ =25.00/ (1.97Q/D ¹⁵ =9.04y/D=1.2/y/D=1.2/y/D=1.2/y/D=1.97is uper criticalDif subcritical orQ/D ¹⁵ =9.04y/D=1.2y/D=1.2y/D=0.40y/D=0.40	Per ⊢ıg 9-38,	use Type	L	riprap d ₅₀ =	9	in.		Riprap D	esignation	d ₅₀	(inches)	
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of1. Given InformationStructure Name and Location:Endsection A01Q25.00c. f.s.(design flow)Tailwater Depth (Y ₁) =D3.00ft.(pipe diameter)D / 3 =3.00n0.013(Manning's n)Allowable Velocity =5fpsAssume flow isSupercritical/SubcriticalSupercritical/Subcritical(Max =7.0 fps if Clay, and 5.0 fps if Sandy)2. Manning Formula - Input Culver/Master ResultsV13.18f.p.s.(velocity)y_n0.94ft.(normal depth of supercritical flow)y_n/D0.31D_s=(D+y_n)/2, for supercritical flowy_n/D0.31D_s(1 + 10, 7)^{15}Q/D ^{1.5} =25.00/ (Q/D ^{1.5} =25.00/ (y/D=1.2/y/D=1.2/y/D=1.2/y/D=1.2/y/D=0.40	Den Fin 0.00	_			-		Figure 9-38. F	iprap erosion protect	ion at circular cond	uit outlet (valid	tor $Q/D_{2,5} \le 6.0$	
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of1. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)Tailwater Depth (Y,) = unknown, assume = 0.4*D1.2ft.D3.00ft.(pipe diameter)D/3 =3.00ft./ft.N0.04350ft./ft.(pipe slope)D/3 =3.00ft./ft.Assume flow isSupercritical/SubcriticalSupercritical/SubcriticalMax.=7.0 fps if Clay, and 5.0 fps if Sandy)Assume flow isSupercritical/Subcritical/SubcriticalV13.18f.p.s.V13.18f.p.s.(velocity) y_n 0.94 y_n0.94ft.(normal depth of supercritical flow)y_n/D0.31 $D_a^{-1.5}$ D if subcritical or D_a if supercriticalQ/D^{1.5}= $Q.0$ $(1.97)^{1.5}$ D if subcritical or D_a if supercriticalQ/D^{1.5}= 9.04 Use D_a instant of D where free is supercritical in the supercritind in the s	y _t /D =	0.40									10-00 ····	
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)Tailwater Depth (Y ₁) = unknown, assume = 0.4*D1.2ft.Q25.00c.f.s(design flow)D / 3 =3.00ft./D3.00ft.(pipe diameter) (Manning's n)D / 3 =3.00ft./Assume flow isSupercriticalSupercritical/SubcriticalX13.18f.p.s.(velocity)y,0.94ft.(normal depth of supercritical flow)y,'/D0.31 D_1.9.7ftD_a=(D+y_n)/2, for supercritical flow)y,'/D0.31 D_1.9.7ftD_af supercriticalQ/D ^{1.5} =Q./D, ^{1.5} D if subcritical or D_a if supercriticalQ/D ^{1.5} =25.00/(1.5=9.041.9.71.9.7	y _t /D =	1.2	/ 3.00				** Use	Type L for a dis	stance of 3D do	wnstream .	o purror:	
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)Tailwater Depth (Yr) = unknown, assume = 0.4*D1.2ft.Q25.00c.f.s(design flow)D / 3 =3.00ft / 3 ==N0.013(Manning's n)Allowable Velocity =5fps1.20ft.Assume flow isSupercriticalSupercritical/Subcritical(Max.=7.0 fps if Clay, and 5.0 fps if Sandy)Assume flow isSupercritical/SubcriticalSupercritical/Subcritical2. Manning Formula - Input CulvertMaster ResultsV13.18f.p.s.(velocity)y_n0.94ft.(normal depth of supercritical flow)y_n/D0.31 D_a1.97ftD_a=(D+y_n)/2, for supercritical flow3. Required Rock SizeQ/D15=25.00/ (1.97Q/D15=25.00/ (1.97)15Q/D15=9.0401.971.5							lies D	instead of D when	never flow is such	ercritical in th	e borrel	
NOLL & ULLEVIGSubject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of1Image: Colspan="2">Structure Name and Location:Endsection A01Image: Colspan="2">Tailwater Depth (Y,) = unknown, assume = 0.4*D1.2ft.D3.00ft.(pipe diameter) (Mannig's n)D / 3 =3.00ft //3 =1.000Assume flow isSupercriticalSupercritical/SuboriticalSupercritical/SuboriticalCelevenD3.00ft.ft.1.2ft.V13.18f.p.s.(velocity)(Max.=7.0 fps if Clay, and 5.0 fps if Sandy)y_n/D0.31 D_a1.97ft.(normal depth of supercritical flow)y_n/D0.31 D_a1.97ft.D a=(D+y_n)/2, for supercritical flowQ/D ^{1.5} =Q/D ₇ ^{1.5} D if subcritical or D_a if supercriticalQ/D ^{1.5} =25.00/(1.97ft.Q/D ^{1.5} =25.00/If supercritical or D_a if supercritical0Q/D ^{1.5} =25.00/If supercritical or D_a if supercritical0Q/D ^{1.5} =25.00/If supercritical or D_a if supercritical0Q/D ^{1.5} =25.00/If supercritical or D_a if supercritical00Q/D ^{1.5} =25.00/If supercritical or D_a if supercritical000B001.500<	Q/D ^{1.5} =	9.04							Υ _† /D			
Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1 I. Given Information Structure Name and Location: Endsection A01 Q 25.00 c.f.s. (design flow) Tailwater Depth (Y ₁) = unknown, assume = 0.4*D 1.2 ft. Q 25.00 c.f.s. (design flow) D / 3 = 3.00 ft // 3 = 1.000 So 0.013 (Manning's n) Allowable Velocity = 5 fts 1 1.000 Assume flow is Supercritical Supercritical/Subcritical Supercritical/Subcritical General Action Fts 1 0.000 Manning Formula - Input CulvertMaster Results (velocity) (velocity) (velocity) 0.94 ft. (normal depth of supercritical flow) 9 9 0 9 0 9 0 9 0 9 0	Q/D ^{1.5} =	25.00	/(1.97)			0	.2	4	.8	1.0	
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)Indexemption and the second and	0 /= 15	05.00	1 1 4 07	15								
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)Tailwater Depth (Y ₁) = unknown, assume = 0.4*D1.2ft.Q25.00c.f.s(design flow)D/3 =3.00ft// 3=1.000N0.013(Manning's n)D/3 =3.00ft// 3=1.000So0.03450ft./ft.(pipe slope)(Max.=7.0 fps if Clay, and 5.0 fps if Sandy)1.000Assume flow isSupercriticalSupercritical/SubcriticalSupercritical/Subcritical2. Manning Formula - Input CulvertMaster ResultsV13.18f.p.s.(velocity)yn0.94ft.(normal depth of supercritical flow)Image: Comparison of the supercritical flowyn/D0.31D_a1.97D_a=(D+y_n)/2, for supercritical flowImage: Comparison of the supercritical flow3. Required Rock Size15D if subcritical orImage: Comparison of the supercritical flowImage: Comparison of the supercritical flow	Q/D ^{1.5} =	= Q	/ D _? ^{1.5}	D _a if supercritical				K		111.5		
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)Tailwater Depth $(Y_1) =$ unknown, assume = 0.4*D1.2ft.D3.00ft.(pipe diameter)D / 3 =3.00ft//3=N0.013 So0.03450ft./ft.(pipe slope)D / 3 =3.00ft//3=1.000Assume flow isSupercriticalSupercritical/SubcriticalSupercritical/SubcriticalUkax.=7.0 fps if Clay, and 5.0 fps if Sandy)Image: Sandy fill of the supercritical flow fill of the supercritical flowImage: Sandy fill of the supercritical flow fill of the supercritical flow y_n/D 0.31 D_a1.97ftD_a=(D+y_n)/2, for supercritical flowImage: Sandy fill of the supercritical flow fill	4 5	-	, 15	D if subcritical or			20	1/		TYPE L	-	
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q 25.00 c.f.s(design flow)Image: Conduct of the product	S. Required ROCK SIZE	;					20			TYPE		
Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1 I. Given Information Structure Name and Location: Endsection A01 Q 25.00 c.f.s (design flow) Tailwater Depth (Y ₁) = unknown, assume = 0.4*D 1.2 ft. Q 25.00 c.f.s (design flow) D / 3 = 3.00 ft// 3 = 1.000 So 0.013 (Manning's n) Allowable Velocity = 5 fps 1.2 ft. Assume flow is Supercritical Supercritical/Subcritical Supercritical/Subcritical Sandy) Gamma flow Gamm	D _a	1.97	tt	$D_a = (D+y_n)/2$, for su	upercritical flow		┥┠━┥	ENERU		YT II		
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)unknown, assume = 0.4*D1.2ft.D3.00ft.(pipe diameter)D / 3 =3.00ft // 3 =1.000n0.013(Manning's n)Allowable Velocity =5fps1.000Assume flow isSupercriticalSupercritical/SubcriticalSupercritical/Subcritical1.0002. Manning Formula - Input CulvertMaster ResultsV13.18f.p.s.(velocity)y_n0.94ft.(normal depth of supercritical flow) 60	y _n /D	0.31	. <u>.</u>				0/0	USEDISSI	XX	DEH		
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q 25.00 c.f.s(design flow)Inknown, assume = 0.4*D1.2ft.D 3.00 ft.(pipe diameter)D / 3 = 3.00 ft / 3 =1.000n 0.013 (Manning's n)Allowable Velocity = 5 fps1.000Assume flow isSupercriticalSupercritical/SubcriticalSupercriticalSupercritical/Subcritical2. Manning Formula - Input CulvertMaster ResultsV13.18f.p.s.(velocity) 60 V13.18f.p.s.(velocity) 60 1.2 1.2 1.2 V13.18f.p.s.(velocity) 60 1.2 1.2 1.2 V 13.18 f.p.s. 1.2 1.2 1.2 1.2 1.2 V 13.18 f.p.s. 1.2 1.2 1.2 1.2 1.2 V 13.18 f.p.s. 1.2 1.2 1.2 1.2 1.2 V 13.18 1.2 1.2 1.2 1.2 1.2 1.2 V 13.18 1.2 1.2 1.2 1.2 1.2 1.2 V $1.3.18$ 1.2 1.2 1.2 1.2 1.2 1.2 V 1.2 1.2 1.2 1.2 1.2 1.2 1.2 V 1.2 1.2 1.2 <							° 40	conc	ATING PE	1		
Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1 I. Given Information Structure Name and Location: Endsection A01 Q 25.00 c.f.s (design flow) Inknown, assume = 0.4*D 1.2 ft. D 3.00 ft. (pipe diameter) D / 3 = 3.00 ft / 3 = 1.000 N 0.013 (Manning's n) Allowable Velocity = 5 fps 1.200 Assume flow is Supercritical Supercritical/Subcritical Supercritical Supercritical Generation V 13.18 f.p.s. (velocity) 60 60 60 60 60									TE BASIN	*		
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01 Q 25.00c.f.s(design flow)Induction (design flow)Induction (design flow)Induction (design flow) D 3.00ft.(pipe diameter) $D/3 = 3.00$ ft./ $3 = 1.000$ n 0.013(Manning's n)Allowable Velocity = 5 fps $5 fps$ $5 fps$ Assume flow isSupercriticalSupercritical/Subcritical $(Max.=7.0 fps if Clay, and 5.0 fps if Sandy)$ 2. Manning Formula - Input CulvertMaster Results V 13.18 f.p.s. $(velocity)$ 60	Уn	0.94	ft.	(normal depth of s	upercritical flow)							
Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1 I. Given Information Structure Name and Location: Endsection A01 Q 25.00 c.f.s (design flow) Indicate To the conduction of the conduction o	•			· ·····//			60					
Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1 I. Given Information Structure Name and Location: Endsection A01 Q 25.00 c.f.s (design flow) Tailwater Depth (Yt) = unknown, assume = $0.4^{*}D$ 1.2 ft. D 3.00 ft. (pipe diameter) D / 3 = 3.00 ft / 3 = 1.000 Assume flow is Supercritical Supercritical/Subcritical Supercritical/Subcritical Manning's n) Allowable Velocity = 5 fps fs andy) 2. Manning Formula - Input CulvertMaster Results Supercritical/Subcritical Supercritical/Subcritical Supercritical/Subcritical Supercritical/Subcritical	V	13.18	f.p.s.	(velocity)								
Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1 1. Given Information Structure Name and Location: Endsection A01 Q 25.00 c.f.s (design flow) Tailwater Depth (Yt) = unknown, assume = 0.4*D 1.2 ft. D 3.00 ft. (pipe diameter) D / 3 = 3.00 ft / 3 = 1.000 Assume flow is Supercritical Supercritical/Subcritical Supercritical/Subcritical Supercritical/Subcritical Supercritical Supercritical/Subcritical	2. manning Formula -		SIGE INCOULS						1			
Subject:Riprap Apron Sizing For Single Circular ConduitChecked:Sheet1of11. Given InformationStructure Name and Location:Endsection A01Q25.00c.f.s(design flow)Tailwater Depth $(Y_t) =$ unknown, assume = 0.4*D1.2ft.D3.00ft.(pipe diameter)D / 3 =3.00ft / 3 =1.000n0.013 S_o0.03450ft./ft.(pipe slope)(Manning's n)Allowable Velocity =5fpsAnswer Stinkft./ft.(pipe slope)(Max.=7.0 fps if Clay, and 5.0 fps if Sandy)ft.ft.	Assume flow is	Supercritical	Supercritica	II/SUDCritical								
Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1 1. Given Information Structure Name and Location: Endsection A01 Q 25.00 c.f.s (design flow) Image: Unknown, assume = 0.4*D 1.2 ft. D 3.00 ft. (pipe diameter) D / 3 = 3.00 ft / 3 = 1.000 n 0.0113 (Manning's n) Allowable Velocity = 5 fps 1	S _o	0.03450	ft./ft.	(pipe slope)		(Ma	ax.=7.0 fps if	Clay, and 5.0	fps if Sandy	()		
Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1 1. Given Information Structure Name and Location: Endsection A01 Q 25.00 c.f.s (design flow) Unknown, assume = $0.4*D$ 1.2 ft. D 3.00 ft. (pipe diameter) D / 3 = 3.00 ft / 3 = 1.000	n	0.013		(Manning's n)		Allowable Veloc	ity =	5	fps			
Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1 1. Given Information Structure Name and Location: Endsection A01 Tailwater Depth (Yt) = unknown, assume = 0.4*D 1.2 ft.	D	3.00	ft.	(pipe diameter)		D/3 =	3.00	ft /	3 =	1.00	0 ft.	
Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1 1. Given Information Structure Name and Location: Endsection A01 Tailwater Depth (Yt) = 1.2 #	Q	25.00	c.f.s	(design flow)		unknown, assur	ne = 0.4*D	1.4	n.			
Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1 1. Given Information Structure Name and Location: Endsection A01						Tailwater Depth	(Y _t) =	1 2	ft			
ULLEVIG Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1	1. Given Information		Structure Name	and Location:	Endsection A01							
ULLEVIG Subject: Riprap Apron Sizing For Single Circular Conduit Checked: Sheet 1 of 1		· · · · ·		*								
	JELLING	Subject:	Riprap Apron Sizir	ng For Single Circular	Conduit	Checked:		Sheet	1 of	1		
FELSBURG Job Title: US 6, Hildrest to Arrowgrass By: KMG Date: 07/18/22 Job No.: 118/339-01	HOLI &	Job Title:	US 6, Hillcrest to Arro	wgrass By:	KMG	Date:	07/18/22	Job	NO.: 11833	39-01	_	
	HOLT &			-	1/1/0	- /	07/10/00					

FELSBUR	G Job Title:	US 6, Hillcrest to An	rowgrass By	: KMG	Da	te:	02/16/22	J	ob No.: 1	18339-	-01
	& G Subiect:	Riprap Apron Sizi	ng For Single Circula	ar Conduit	Checke	ed:		Sheet	1	of	1
			5 5 -	-				0		0.	·
1. Given Information	on	Structure Name	e and Location:	Endsection C01							
Q D n S _o Assume flow i	4.82 2.00 0.013 0.00700 s Supercritica	c.f.s ft. ft./ft.	(design flow) (pipe diameter) (Manning's n) (pipe slope) al/Subcritical		Tailwater unknown D / 3 = Allowable	Depth , assun : Veloci (Ma	(Y _t) = ne = 0.4*D 2.00 ity = ax.=7.0 fps if	0.8 ft / 5 Clay, and 5	ft. 3 <u>fps</u> 5.0 fps if S	= andy)	0.667 ft.
2. Manning Formu	a - Input Culvert	Master Results	a, o a o o na o a						1		
V y _n	5.03 0.69	f.p.s.	(velocity) (normal depth of s	supercritical flow)		60 9 40		CONC.	NG BASIN	27	
y _n /D D _a 3. Required Rock S	0.35 1.35 Size	ft	D _a =(D+y _n)/2, for s	supercritical flow		20		USE DISS.		TYPE	H E M
Q/D ^{1.5}	= Q = 4.82	/ D ₂ ^{1.5}	D if subcritical or D_a if supercritical	-		0					
	1.02		1				, .2	.4	Yt/D	0	.0 1.0
Q/D ^{1.5} y _t /D y _t /D	= <u>3.09</u> = 0.8 = <u>0.40</u>	/ 2.00				Figure	Use D _d instead **Use Type L e 9-38. Riprap ero	of D whenev for a dista	er flow is s nce of 3D atcircularce	upercriti downstre onduit ou	ical in the barrel. cam . tlet (valid for $Q/D_{2.5} \le 6.0$)
Per Fig 9-38	use Tvr		ripran d., =	٩	in			Riprap	Designa	tion	dre (inches)
	d ₅₀ =	= 0.13	ft check from	putting eq. 9-18 into ec	. 9-16 for				L		9
Minimum Thickr	ness of d ₅₀		supercritical						М		12
T _{MIN} = 2 * d ₅₀	= 2	* 9	= 18	in. =	1.5	ft.			Н		18
				_					VH		24
4. Extent of Protec	tion										
Q	4.82	=	0.9 > 6.0 by ~	0		i	8[0 = E	xpansion Angle
D ^{2.5}	-=	00 2.5	so increase L _{pmax}	by 1/4D for every	1						
Use Figure 9-35 1 2Tan O	is to the right to fin _ = 6.7	d 1/(2Tan⊖) = Expansion Factor	produ		-	TOR , 2 tan 0	6 5 0 0	10		7	
5. Lp, Length of Pr	otection					FAC		XI	1 20	0	
where V L _{p =} 1/2 Tan 6 L _{p =} 6.7	is max. allow velo	bcity / y _t / 0.8 ft	- <i>D</i>) - 2.00)		EXPANSION	3		//		
$\frac{L_{p} CHECK}{L_{p Min} = 3^{*}D}$ $L_{p Max} = 10^{*}D + 1/4$ USE	 D(0 E =	6)= 20 6	ft ft ft				OLI OI TAILWA	.2 .3 TER DEPT	.4 H / COND	.5 UIT HE	.6 .7 .8 EIGHT, Y _t /D
					L		rigurey	-co. Expansi	IST TACION IC	a circu	
7. T, Width of Prot T = 2 (L _p * Tan	e ction Ə)+ Diameter of	conduit = 2 * (6 * 1/(2*Exp	oansion Factor)) +	2.00		=	2.9	ft.	USE	3 ft.
0. Summers											
Riprap Min. d ₅₀ (in.) T _{MIN} , Min. Thickness (ft.	L _p , Min. Length .) (ft.)	T, Min. Width (ft.)	Riprap Quantity (C.Y.)	Fi (Class /	Iter Ma A) Qua	nterial Intity (C.Y.)				
	1.9	Ū	<u> </u> ວ	1.0		0.7					

Riprap Apron Sizing Calculations for Single Circular Conduit

APPENDIX C. SUPPORTING INFORMATION

NOAA Atlas 14, Volume 8, Version 2 Location name: Edwards, Colorado, USA* Latitude: 39.654°, Longitude: -106.6291° Elevation: 7137.85 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Averag	e recurrenc	e interval (y	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.106	0.163	0.253	0.325	0.419	0.487	0.551	0.614	0.690	0.744
	(0.084-0.135)	(0.129-0.208)	(0.200-0.325)	(0.254-0.419)	(0.311-0.558)	(0.355-0.663)	(0.388-0.777)	(0.413-0.897)	(0.446-1.05)	(0.471-1.16)
10-min	0.155	0.239	0.371	0.476	0.613	0.713	0.807	0.898	1.01	1.09
	(0.122-0.197)	(0.189-0.305)	(0.292-0.476)	(0.372-0.614)	(0.456-0.817)	(0.519-0.971)	(0.568-1.14)	(0.604-1.31)	(0.653-1.54)	(0.690-1.70)
15-min	0.189	0.291	0.453	0.580	0.747	0.869	0.985	1.10	1.23	1.33
	(0.149-0.241)	(0.230-0.372)	(0.356-0.580)	(0.454-0.749)	(0.556-0.997)	(0.633-1.18)	(0.692-1.39)	(0.737-1.60)	(0.796-1.87)	(0.841-2.08)
30-min	0.274	0.373	0.535	0.672	0.864 (0.651.1.17)	1.01	1.17 (0.826 1.66)	1.32	1.53	1.69 (1.07-2.65)
60-min	0.362	0.453	0.609	0.745	0.945	1.11	1.28	1.46	1.71	1.91
	(0.287-0.462)	(0.358-0.578)	(0.479-0.780)	(0.583-0.962)	(0.717-1.29)	(0.817-1.54)	(0.909-1.83)	(0.992-2.17)	(1.12-2.63)	(1.21-2.98)
2-hr	0.450 (0.359-0.569)	0.533 (0.424-0.675)	0.682 (0.541-0.867)	0.818 (0.646-1.05)	1.03 (0.789-1.39)	1.20 (0.898-1.66)	1.39 (1.00-1.98)	1.59 (1.10-2.35)	1.89 (1.25-2.88)	2.12 (1.36-3.27)
3-hr	0.518	0.592	0.729	0.858	1.06	1.23	1.42	1.62	1.92	2.17
	(0.415-0.652)	(0.473-0.745)	(0.581-0.921)	(0.680-1.09)	(0.820-1.43)	(0.926-1.69)	(1.03-2.01)	(1.13-2.38)	(1.28-2.91)	(1.39-3.32)
6-hr	0.652	0.731	0.876	1.01	1.22	1.39	1.59	1.80	2.10	2.34
	(0.527-0.814)	(0.590-0.913)	(0.704-1.10)	(0.807-1.27)	(0.950-1.62)	(1.06-1.89)	(1.16-2.22)	(1.26-2.60)	(1.41-3.14)	(1.52-3.54)
12-hr	0.808	0.930	1.14	1.33	1.60	1.82	2.05	2.30	2.64	2.91
	(0.658-0.999)	(0.756-1.15)	(0.924-1.42)	(1.07-1.66)	(1.25-2.09)	(1.39-2.42)	(1.51-2.82)	(1.62-3.26)	(1.79-3.88)	(1.91-4.35)
24-hr	1.00	1.16	1.43	1.67	2.01	2.28	2.57	2.87	3.29	3.62
	(0.821-1.23)	(0.950-1.42)	(1.17-1.76)	(1.35-2.06)	(1.58-2.60)	(1.76-3.01)	(1.91-3.49)	(2.04-4.03)	(2.25-4.77)	(2.40-5.33)
2-day	1.23	1.40	1.69	1.95	2.34	2.66	2.99	3.35	3.86	4.26
	(1.02-1.50)	(1.16-1.70)	(1.39-2.06)	(1.60-2.39)	(1.86-3.00)	(2.06-3.47)	(2.25-4.02)	(2.41-4.65)	(2.67-5.53)	(2.86-6.19)
3-day	1.38 (1.14-1.66)	1.57 (1.30-1.90)	1.90 (1.57-2.31)	2.19 (1.81-2.67)	2.62 (2.10-3.34)	2.97 (2.32-3.85)	3.34 (2.52-4.46)	3.74 (2.70-5.14)	4.28 (2.98-6.09)	4.72 (3.19-6.80)
4-day	1.50	1.71	2.07	2.38	2.84	3.22	3.60	4.02	4.59	5.04
	(1.25-1.80)	(1.42-2.06)	(1.72-2.50)	(1.97-2.90)	(2.28-3.60)	(2.52-4.14)	(2.73-4.78)	(2.91-5.49)	(3.20-6.48)	(3.42-7.22)
7-day	1.81 (1.52-2.17)	2.04 (1.71-2.44)	2.43 (2.03-2.91)	2.76 (2.30-3.33)	3.25 (2.63-4.09)	3.65 (2.88-4.66)	4.07 (3.10-5.34)	4.51 (3.30-6.10)	5.12 (3.60-7.14)	5.60 (3.83-7.93)
10-day	2.09	2.32	2.73	3.09	3.60	4.02	4.46	4.93	5.57	6.08
	(1.76-2.48)	(1.96-2.76)	(2.29-3.26)	(2.58-3.70)	(2.93-4.50)	(3.19-5.10)	(3.42-5.82)	(3.63-6.62)	(3.94-7.73)	(4.19-8.56)
20-day	2.83 (2.40-3.33)	3.13 (2.66-3.69)	3.65 (3.09-4.31)	4.10 (3.45-4.86)	4.74 (3.88-5.84)	5.25 (4.20-6.57)	5.79 (4.47-7.44)	6.35 (4.71-8.41)	7.12 (5.09-9.72)	7.72 (5.37-10.7)
30-day	3.44 (2.94-4.03)	3.82 (3.27-4.48)	4.46 (3.79-5.24)	4.99 (4.23-5.90)	5.75 (4.72-7.02)	6.34 (5.09-7.87)	6.95 (5.40-8.85)	7.58 (5.65-9.94)	8.42 (6.05-11.4)	9.07 (6.36-12.5)
45-day	4.25 (3.65-4.94)	4.73 (4.06-5.51)	5.52 (4.72-6.45)	6.17 (5.25-7.24)	7.06 (5.81-8.54)	7.74 (6.24-9.51)	8.42 (6.57-10.6)	9.10 (6.83-11.8)	10.0 (7.23-13.4)	10.7 (7.53-14.6)
60-day	4.95 (4.27-5.74)	5.53 (4.76-6.41)	6.45 (5.54-7.51)	7.20 (6.14-8.41)	8.19 (6.76-9.83)	8.94 (7.22-10.9)	9.66 (7.56-12.1)	10.4 (7.80-13.4)	11.3 (8.18-15.0)	12.0 (8.47-16.2)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 39.6540°, Longitude: -106.6291°

NOAA Atlas 14, Volume 8, Version 2

Created (GMT): Mon Apr 26 16:16:27 2021

Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale map

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

USDA Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
6	Almy loam, 1 to 12 percent slopes	В	0.4	0.0%
13	Atencio-Azeltine complex, 3 to 6 percent slopes	В	14.2	1.3%
20	Coulterg loam, 12 to 50 percent slopes	В	215.5	19.7%
26	Dahlquist-Southace complex, 6 to 12 percent slopes	В	20.2	1.8%
38	Evanston loam, 1 to 6 percent slopes	С	30.9	2.8%
39	Evanston loam, 6 to 25 percent slopes	С	2.7	0.3%
55	Gypsum land- Gypsiorthids complex, 12 to 65 percent slopes	Assume C/D	177.8	16.3%
65	Jerry-Millerlake loams, 1 to 6 percent slopes	С	0.7	0.1%
66	Jerry-Millerlake loams, 6 to 25 percent slopes	С	31.9	2.9%
69	Kilgore silt loam	С	13.9	1.3%
89	Mussel loam, 1 to 6 percent slopes	В	15.5	1.4%
90	Mussel loam, 6 to 12 percent slopes	В	1.6	0.1%
92	Redrob loam, 1 to 6 percent slopes	С	8.6	0.8%
103	Tanna-Pinelli complex, 12 to 25 percent slopes	D	59.5	5.4%
104	Torriorthents- Camborthids-Rock outcrop complex, 6 to 65 percent	C	13.0	1.2%
107	Uracca, moist-Mergel complex, 1 to 6 percent slopes, extremely s	В	43.0	3.9%
108	Uracca, moist-Mergel complex, 6 to 12 percent slopes, extremely	В	1.9	0.2%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
109	Uracca, moist-Mergel complex, 12 to 25 percent slopes, extremely	В	7.6	0.7%
110	Uracca, moist-Mergel complex, 25 to 65 percent slopes, extremely	В	12.9	1.2%
111	Vandamore channery sandy loam, 25 to 65 percent slopes	В	331.5	30.4%
115	Yamo loam, 6 to 12 percent slopes	В	70.7	6.5%
120	Water		17.8	1.6%
Totals for Area of Inter	est	1,092.0	100.0%	
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher